Search Results

Now showing 1 - 10 of 16
  • Item
    Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling
    (Basel : MDPI AG, 2017) Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V.
    The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model-Soil and Water Integrated Model (SWIM)-was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.
  • Item
    Climate or land use? - Attribution of changes in river flooding in the Sahel zone
    (Basel : MDPI AG, 2015) Aich, V.; Liersch, S.; Vetter, T.; Andersson, J.C.M.; Müller, E.N.; Hattermann, F.F.
  • Item
    Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets
    (Hoboken, NJ : Blackwell Publishing Ltd, 2017) James, R.; Washington, R.; Schleussner, C.-F.; Rogelj, J.; Conway, D.
    The Paris Agreement long-term global temperature goal refers to two global warming levels: well below 2°C and 1.5°C above preindustrial. Regional climate signals at specific global warming levels, and especially the differences between 1.5°C and 2°C, are not well constrained, however. In particular, methodological challenges related to the assessment of such differences have received limited attention. This article reviews alternative approaches for identifying regional climate signals associated with global temperature limits, and evaluates the extent to which they constitute a sound basis for impacts analysis. Four methods are outlined, including comparing data from different greenhouse gas scenarios, sub-selecting climate models based on global temperature response, pattern scaling, and extracting anomalies at the time of each global temperature increment. These methods have rarely been applied to compare 2°C with 1.5°C, but some demonstrate potential avenues for useful research. Nevertheless, there are methodological challenges associated with the use of existing climate model experiments, which are generally designed to model responses to different levels of greenhouse gas forcing, rather than to model climate responses to a specific level of forcing that targets a given level of global temperature change. Novel approaches may be required to address policy questions, in particular: to differentiate between half degree warming increments while accounting for different sources of uncertainty; to examine mechanisms of regional climate change including the potential for nonlinear responses; and to explore the relevance of time-lagged processes in the climate system and declining emissions, and the resulting sensitivity to alternative mitigation pathways. WIREs Clim Change 2017, 8:e457. doi: 10.1002/wcc.457. For further resources related to this article, please visit the WIREs website.
  • Item
    The challenge to detect and attribute effects of climate change on human and natural systems
    (Dordrecht [u.a.] : Springer, 2013) Stone, D.; Auffhammer, M.; Carey, M.; Hansen, G.; Huggel, C.; Cramer, W.; Lobell, D.; Molau, U.; Solow, A.; Tibig, L.; Yohe, G.
    Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts.
  • Item
    Comparison of water flows in four European lagoon catchments under a set of future climate scenarios
    (Basel : MDPI AG, 2015) Hesse, C.; Stefanova, A.; Krysanova, V.
  • Item
    Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland
    (Basel : MDPI AG, 2017) Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T.
    Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021-2050, and far future: 2071-2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models-Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment-European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.
  • Item
    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China
    (Chichester : John Wiley and Sons Ltd, 2013) Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X.
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance.
  • Item
    Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model
    (Amsterdam [u.a.] : Elsevier, 2011) Klein, D.; Bauer, N.; Bodirsky, B.; Dietrich, J.P.; Popp, A.
    This study analyses the impact of techno-economic performance of the BIGCC process and the effect of different biomass feedstocks on the technology's long term deployment in climate change mitigation scenarios. As the BIGCC technology demands high amounts of biomass raw material it also affects the land-use sector and is dependent on conditions and constraints on the land-use side. To represent the interaction of biomass demand and supply side the global energy-economy-climate model ReMIND is linked to the global land-use model MAgPIE. The link integrates biomass demand and price as well as emission prices and land-use emissions. Results indicate that BIGCC with CCS could serve as an important mitigation option and that it could even be the main bioenergy conversion technology sharing 33% of overall mitigation in 2100. The contribution of BIGCC technology to long-term climate change mitigation is much higher if grass is used as fuel instead of wood, provided that the grass-based process is highly efficient. The capture rate has to significantly exceed 60 % otherwise the technology is not applied. The overall primary energy consumption of biomass reacts much more sensitive to price changes of the biomass than to technoeconomic performance of the BIGCC process. As biomass is mainly used with CCS technologies high amounts of carbon are captured ranging from 130 GtC to 240 GtC (cumulated from 2005-2100) in different scenarios.