Search Results

Now showing 1 - 2 of 2
  • Item
    Hydrogen bonding in ionic liquids probed by linear and nonlinear vibrational spectroscopy
    (Bristol : IOP, 2012) Roth, C.; Chatzipapadopoulos, S.; Kerlé, D.; Friedriszik, F.; Lütgens, M.; Lochbrunner, S.; Kühn, O.; Ludwig, R.
    Three imidazolium-based ionic liquids of the type [Cnmim] [NTf2] with different alkyl chain lengths (n = 1, 2 and 8) at the first position of the imidazolium ring were studied applying infrared, linear Raman and multiplex coherent anti-Stokes Raman scattering spectroscopy. The focus has been on the CH-stretching region of the imidazolium ring, which is supposed to carry information about a possible hydrogen bonding network in the ionic liquid. The measurements are compared with calculations of the corresponding anharmonic vibrational spectra for a cluster of [C 2mim][NTf2] consisting of four ion pairs. The results support the hypothesis of weak hydrogen bonding involving the C(4)-H and C(5)-H groups and somewhat stronger hydrogen bonds of the C(2)-H groups.
  • Item
    Probing Oxide Reduction and Phase Transformations at the Au-TiO2 Interface by Vibrational Spectroscopy
    (Bussum : Baltzer, 2017-8-17) Pougin, Anna; Lüken, Alexander; Klinkhammer, Christina; Hiltrop, Dennis; Kauer, Max; Tölle, Katharina; Havenith-Newen, Martina; Morgenstern, Karina; Grünert, Wolfgang; Muhler, Martin; Strunk, Jennifer
    By a combination of FT-NIR Raman spectroscopy, infrared spectroscopy of CO adsorption under ultrahigh vacuum conditions (UHV-IR) and Raman spectroscopy in the line scanning mode the formation of a reduced titania phase in a commercial Au/TiO2 catalyst and in freshly prepared Au/anatase catalysts was detected. The reduced phase, formed at the Au-TiO2 interface, can serve as nucleation point for the formation of stoichiometric rutile. TinO2n−1 Magnéli phases, structurally resembling the rutile phase, might be involved in this process. The formation of the reduced phase and the rutilization process is clearly linked to the presence of gold nanoparticles and it does not proceed under similar conditions with the pure titania sample. Phase transformations might be both thermally or light induced, however, the colloidal deposition synthesis of the Au/TiO2 catalysts is clearly ruled out as cause for the formation of the reduced phase.