Search Results

Now showing 1 - 8 of 8
  • Item
    Long-term wintertime trend of zonally asymmetric ozone in boreal extratropics during 1979-2016
    (Basel : MDPI AG, 2018) Schneidereit, A.; Peters, D.H.W.
    Strong zonally asymmetric ozone (ZAO) changes are observed in the boreal extratropics for winter. During the TOMS (Total Ozone Mapping Spectrometer) period (1979-1992) the decrease of zonally asymmetric total ozone (ZATO) was twice as large as the observed zonal mean total ozone trend over Europe in January mainly caused by ultra-long wave transport. Recent studies have demonstrated that the ozone evolution reveals three different quasi-bidecadal trend stages: (i) Decline, (ii) leveling, and (ii) healing. This study focuses on the ZAO structure in boreal extratropics and on ozone transport changes by ultra-long waves during winter months. ERA-Interim data together with a linearized transport model are used. During the healing stage ZATO increases significantly over the North Atlantic/European region for January. The ZATO increase (healing stage) and ZATO decrease (decline stage) are caused by different monthly mean ozone transport characteristics of ultra-long planetary waves over the North Atlantic/European region. Furthermore, the vertical advection (ageostrophic transport) of ozone versus its horizontal component dominates in the lower and middle stratosphere during the healing stage. It is hypothesized that these ageostrophic wind changes are mainly caused by a wave train directed northeastwards which seems to be directly linked to the Arctic warming. © 2018 by the authors.
  • Item
    Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies
    (Katlenburg-Lindau : EGU, 2017) Mu, Qing; Lammel, Gerhard; Gencarelli, Christian N.; Hedgecock, Ian M.; Chen, Ying; Přibylová, Petra; Teich, Monique; Zhang, Yuxuan; Zheng, Guangjie; van Pinxteren, Dominik; Zhang, Qiang; Herrmann, Hartmut; Shiraiwa, Manabu; Spichtinger, Peter; Su, Hang; Pöschl, Ulrich; Cheng, Yafang
    Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants, with increasing emissions in pace with economic development in East Asia, but their distribution and fate in the atmosphere are not yet well understood. We extended the regional atmospheric chemistry model WRF-Chem (Weather Research Forecast model with Chemistry module) to comprehensively study the atmospheric distribution and the fate of low-concentration, slowly degrading semivolatile compounds. The WRF-Chem-PAH model reflects the state-of-the-art understanding of current PAHs studies with several new or updated features. It was applied for PAHs covering a wide range of volatility and hydrophobicity, i.e. phenanthrene, chrysene and benzo[a]pyrene, in East Asia. Temporally highly resolved PAH concentrations and particulate mass fractions were evaluated against observations. The WRF-Chem-PAH model is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions. Sensitivity study shows that the heterogeneous reaction with ozone and the homogeneous reaction with the nitrate radical significantly influence the fate and distributions of PAHs. The methods to implement new species and to correct the transport problems can be applied to other newly implemented species in WRF-Chem.
  • Item
    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezing
    (Katlenburg-Lindau : EGU, 2016) Boose, Yvonne; Welti, André; Atkinson, James; Ramelli, Fabiola; Danielczok, Anja; Bingemer, Heinz G.; Plötze, Michael; Sierau, Berko; Kanji, Zamin A.; Lohmann, Ulrike
    Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance.
  • Item
    Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset
    (Katlenburg-Lindau : EGU, 2017) Marinou, Eleni; Amiridis, Vassilis; Binietoglou, Ioannis; Tsikerdekis, Athanasios; Solomos, Stavros; Proestakis, Emannouil; Konsta, Dimitra; Papagiannopoulos, Nikolaos; Tsekeri, Alexandra; Vlastou, Georgia; Zanis, Prodromos; Balis, Dimitrios; Wandinger, Ulla; Ansmann, Albert
    In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during transportation, since it is capable of revealing even fine dynamical features such as the particle uplifting and deposition on European mountainous ridges such as the Alps and Carpathian Mountains.
  • Item
    Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska
    (Katlenburg-Lindau : EGU, 2017) Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.; Barrett, Tate E.; China, Swarup; Sheesley, Rebecca J.; Laskin, Alexander; Wiedensohler, Alfred; Tuch, Thomas; Pratt, Kerri A.
    Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiaġvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13-4 μm projected area diameter) and real-time single-particle mass spectrometry (0.2-1.5 μm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 % of the study), our results show that fresh sea spray aerosol contributed ∼ 20 %, by number, of particles between 0.13 and 0.4 μm, 40-70 % between 0.4 and 1 μm, and 80-100 % between 1 and 4 μm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13-1 μm) combustion-derived particles (20-50 % organic carbon, by number; 5-10 % soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 μm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm-3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.
  • Item
    Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21-22 August 2017
    (Katlenburg-Lindau : EGU, 2018) Ansmann, Albert; Baars, Holger; Chudnovsky, Alexandra; Mattis, Ina; Veselovskii, Igor; Haarig, Moritz; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla
    Light extinction coefficients of 500 Mm1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by European Aerosol Research Lidar Network (EARLINET) lidars in the stratosphere over central Europe on 21-22 August 2017. Pronounced smoke layers with a 1-2 km vertical extent were found 2-5 km above the local tropopause. Optically dense layers of Canadian wildfire smoke reached central Europe 10 days after their injection into the upper troposphere and lower stratosphere which was caused by rather strong pyrocumulonimbus activity over western Canada. The smoke-related aerosol optical thickness (AOT) identified by lidar was close to 1.0 at 532 nm over Leipzig during the noon hours on 22 August 2017. Smoke particles were found throughout the free troposphere (AOT of 0.3) and in the pronounced 2 km thick stratospheric smoke layer at an altitude of 14-16 km (AOT of 0.6). The lidar observations indicated peak mass concentrations of 70-100 μgm-3 in the stratosphere. In addition to the lidar profiles, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) over Canada, and the distribution of MODIS AOT and Ozone Monitoring Instrument (OMI) aerosol index across the North Atlantic. These instruments showed a similar pattern and a clear link between the western Canadian fires and the aerosol load over Europe. In this paper, we also present Aerosol Robotic Network (AERONET) sun photometer observations, compare photometer and lidar-derived AOT, and discuss an obvious bias (the smoke AOT is too low) in the photometer observations. Finally, we compare the strength of this recordbreaking smoke event (in terms of the particle extinction coefficient and AOT) with major and moderate volcanic events observed over the northern midlatitudes.
  • Item
    The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions
    (Göttingen : Copernicus GmbH, 2019) Banks, J.R.; Hünerbein, A.; Heinold, B.; Brindley, H.E.; Deneke, H.; Schepanski, K.
    Infrared "Desert Dust" composite imagery taken by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), onboard the Meteosat Second Generation (MSG) series of satellites above the equatorial East Atlantic, has been widely used for more than a decade to identify and track the presence of dust storms from and over the Sahara Desert, the Middle East, and southern Africa. Dust is characterised by distinctive pink colours in the Desert Dust false-colour imagery; however, the precise colour is influenced by numerous environmental properties, such as the surface thermal emissivity and skin temperature, the atmospheric water vapour content, the quantity and height of dust in the atmosphere, and the infrared optical properties of the dust itself. For this paper, simulations of SEVIRI infrared measurements and imagery have been performed using a modelling system, which combines dust concentrations simulated by the aerosol transport model COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) with radiative transfer simulations from the RTTOV (Radiative Transfer for TOVS) model. Investigating the sensitivity of the synthetic infrared imagery to the environmental properties over a 6-month summertime period from 2011 to 2013, it is confirmed that water vapour is a major control on the apparent colour of dust, obscuring its presence when the moisture content is high. Of the three SEVIRI channels used in the imagery (8.7, 10.8, and 12.0 μm), the channel at 10.8 μm has the highest atmospheric transmittance and is therefore the most sensitive to the surface skin temperature. A direct consequence of this sensitivity is that the background desert surface exhibits a strong diurnal cycle in colour, with light blue colours possible during the day and purple hues prevalent at night. In dusty scenes, the clearest pink colours arise from high-altitude dust in dry atmospheres. Elevated dust influences the dust colour primarily by reducing the contrast in atmospheric transmittance above the dust layer between the SEVIRI channels at 10.8 and 12.0 μm, thereby boosting red and pink colours in the imagery. Hence, the higher the dust altitude, the higher the threshold column moisture needed for dust to be obscured in the imagery: for a sample of dust simulated to have an aerosol optical depth (AOD) at 550 nm of 2-3 at an altitude of 3-4 km, the characteristic colour of the dust may only be impaired when the total column water vapour is particularly moist ('39 mm). Meanwhile, dust close to the surface (altitude < 1 km) is only likely to be apparent when the atmosphere is particularly dry and when the surface is particularly hot, requiring column moisture/13 mm and skin temperatures '314 K, and is highly unlikely to be apparent when the skin temperature is/300 K. Such low-altitude dust will regularly be almost invisible within the imagery, since it will usually be beneath much of the atmospheric water vapour column. It is clear that the interpretation of satellite-derived dust imagery is greatly aided by knowledge of the background environment.
  • Item
    Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model
    (Katlenburg-Lindau : EGU, 2015) Kim, P.S.; Jacob, D.J.; Fisher, J.A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R.M.; Sulprizio, M.P.; Jimenez, J.L.; Campuzano-Jost, P.; Froyd, K.D.; Liao, J.; Hair, J.W.; Fenn, M.A.; Butler, C.F.; Wagner, N.L.; Gordon, T.D.; Welti, A.; Wennberg, P.O.; Crounse, J.D.; St. Clair, J.M.; Teng, A.P.; Millet, D.B.; Schwarz, J.P.; Markovic, M.Z.; Perring, A.E.
    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5–3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42−] + [NO3−]) is only 0.5–0.7 mol mol−1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8–28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM2.5 shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM2.5. This implies that satellites can be used reliably to infer surface PM2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.