Search Results

Now showing 1 - 10 of 134
  • Item
    Projections of temperature-related excess mortality under climate change scenarios
    (Amsterdam : Elsevier B.V., 2017) Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; Valdes Ortega, N.; Kan, H.; Osorio, S.; Kyselý, J.; Urban, A.; Jaakkola, J.J.K.; Ryti, N.R.I.; Pascal, M.; Goodman, P.G.; Zeka, A.; Michelozzi, P.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Diaz, M.; Cesar Cruz, J.; Seposo, X.; Kim, H.; Tobias, A.; Iñiguez, C.; Forsberg, B.; Åström, D.O.; Ragettli, M.S.; Guo, Y.L.; Wu, C.-F.; Zanobetti, A.; Schwartz, J.; Bell, M.L.; Dang, T.N.; Van, D.D.; Heaviside, C.; Vardoulakis, S.; Hajat, S.; Haines, A.; Armstrong, B.
    Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks. Funding: UK Medical Research Council.
  • Item
    Surface defects reduce Carbon Nanotube toxicity in vitro
    (Amsterdam [u.a.] : Elsevier Science, 2019) Requardt, Hendrik; Braun, Armin; Steinberg, Pablo; Hampel, Silke; Hansen, Tanja
    The cytotoxicity of two different types of Multi-walled Carbon Nanotubes (MWCNTs)in A549 lung epithelial cells and HepG2 hepatocytes was investigated. One MWCNT still contained iron that was used as a catalyst during production, while the other one had all iron removed in a post-production heat treatment resulting in significantly fewer surface defects. The WST-8 assay was applied to test cell viability. To check the integrity of the cell membrane, we performed the lactate dehydrogenases assay (LDH)and measured the cellular production of reactive oxygen species (ROS). Finally, to examine cell proliferation, we conducted a cell cycle analysis. The results showed a dose- and time-dependent decrease in cell viability for both MWCNTs in both cell types. Moreover, a dose- and time-dependent increase in LDH leakage was detected, thereby indicating a decreased membrane integrity. The production of ROS was significantly increased in the case of the heat-treated MWCNTs. The heat-treated MWCNTs showed significantly stronger adverse effects when compared to the non-treated MWCNTs. Additionally, the heat-treated MWCNTs induced a dose-dependent cell cycle arrest in A549 cells. Both MWCNTs induced a significant cytotoxicity, whereby the heat treatment, leading to a decrease in surface defects, further increased the indicated adverse effects. © 2019 The Authors
  • Item
    Medical ethics in the Anthropocene: how are €100 billion of German physicians' pension funds invested?
    (Amsterdam : Elsevier, 2019) Schulz, Christian M.; Ahrend, Klaus-Michael; Schneider, Gerhard; Hohendorf, Gerrit; Schellnhuber, Hans Joachim; Busse, Reinhard
    [No abstract available]
  • Item
    Structural insights into heme binding to IL-36α proinflammatory cytokine
    (Berlin : Nature Publishing, 2019) Wißbrock, Amelie; Goradia, Nishit; Kumar, Amit; Paul George, Ajay Abisheck; Kühl, Toni; Bellstedt, Peter; Ramachandran, Ramadurai; Hoffmann, Patrick; Galler, Kerstin; Popp, Jürgen; Neugebauer, Ute; Hampel, Kornelia; Zimmermann, Bastian; Adam, Susanne; Wiendl, Maximilian; Krönke, Gerhard; Hamza, Iqbal; Heinemann, Stefan H.; Frey, Silke; Hueber, Axel J.; Ohlenschläger, Oliver; Imhof, Diana
    Cytokines of the interleukin (IL)-1 family regulate immune and inflammatory responses. The recently discovered IL-36 family members are involved in psoriasis, rheumatoid arthritis, and pulmonary diseases. Here, we show that IL-36α interacts with heme thereby contributing to its regulation. Based on in-depth spectroscopic analyses, we describe two heme-binding sites in IL-36α that associate with heme in a pentacoordinated fashion. Solution NMR analysis reveals structural features of IL-36α and its complex with heme. Structural investigation of a truncated IL-36α supports the notion that the N-terminus is necessary for association with its cognate receptor. Consistent with our structural studies, IL-36-mediated signal transduction was negatively regulated by heme in synovial fibroblast-like synoviocytes from rheumatoid arthritis patients. Taken together, our results provide a structural framework for heme-binding proteins and add IL-1 cytokines to the group of potentially heme-regulated proteins.
  • Item
    Recurrence Quantification Analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease
    (London : Nature Publishing Group, 2018) Afsar, O.; Tirnakli, U.; Marwan, N.
    In this letter, making use of real gait force profiles of healthy and patient groups with Parkinson disease which have different disease severity in terms of Hoehn-Yahr stage, we calculate various heuristic complexity measures of the recurrence quantification analysis (RQA). Using this technique, we are able to evince that entropy, determinism and average diagonal line length (divergence) measures decrease (increases) with increasing disease severity. We also explain these tendencies using a theoretical model (based on the sine-circle map), so that we clearly relate them to decreasing degree of irrationality of the system as a course of gait's nature. This enables us to interpret the dynamics of normal/pathological gait and is expected to increase further applications of this technique on gait timings, gait force profiles and combinations of them with various physiological signals.
  • Item
    In Vitro Selection of Specific DNA Aptamers Against the Anti-Coagulant Dabigatran Etexilate
    (Berlin : Nature Publishing, 2018) Aljohani, Maher M; Chinnappan, Raja; Eissa, Shimaa; Alsager, Omar A; Weber, Karina; Cialla-May, Dana; Popp, Jürgen; Zourob, Mohammed
    Dabigatran Etexilate (PRADAXA) is a new oral anticoagulant increasingly used for a number of blood thrombosis conditions, prevention of strokes and systemic emboli among patients with atrial fibrillation. It provides safe and adequate anticoagulation for prevention and treatment of thrombus in several clinical settings. However, anticoagulation therapy can be associated with an increased risk of bleeding. There is a lack of specific laboratory tests to determine the level of this drug in blood. This is considered the most important obstacles of using this medication, particularly for patients with trauma, drug toxicity, in urgent need for surgical interventions or uncontrolled bleeding. In this work, we performed Systematic evolution of ligands by exponential enrichment (SELEX) to select specific DNA aptamers against dabigatran etexilate. Following multiple rounds of selection and enrichment with a randomized 60-mer DNA library, specific DNA aptamers for dabigatran were selected. We investigated the affinity and specificity of generated aptamers to the drug showing dissociation constants (Kd) ranging from 46.8–208 nM. The most sensitive aptamer sequence was selected and applied in an electrochemical biosensor to successfully achieve 0. 01 ng/ml level of detection of the target drug. With further improvement of the assay and optimization, these aptamers would replace conventional antibodies for developing detection assays in the near future.Dabigatran Etexilate (PRADAXA) is a new oral anticoagulant increasingly used for a number of blood thrombosis conditions, prevention of strokes and systemic emboli among patients with atrial fibrillation. It provides safe and adequate anticoagulation for prevention and treatment of thrombus in several clinical settings. However, anticoagulation therapy can be associated with an increased risk of bleeding. There is a lack of specific laboratory tests to determine the level of this drug in blood. This is considered the most important obstacles of using this medication, particularly for patients with trauma, drug toxicity, in urgent need for surgical interventions or uncontrolled bleeding. In this work, we performed Systematic evolution of ligands by exponential enrichment (SELEX) to select specific DNA aptamers against dabigatran etexilate. Following multiple rounds of selection and enrichment with a randomized 60-mer DNA library, specific DNA aptamers for dabigatran were selected. We investigated the affinity and specificity of generated aptamers to the drug showing dissociation constants (Kd) ranging from 46.8–208 nM. The most sensitive aptamer sequence was selected and applied in an electrochemical biosensor to successfully achieve 0. 01 ng/ml level of detection of the target drug. With further improvement of the assay and optimization, these aptamers would replace conventional antibodies for developing detection assays in the near future.
  • Item
    Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing
    (Wyoming, NSW : Ivyspring, 2019) Schmidt, Anke; Woedtke, Thomas, von; Vollmar, Brigitte; Hasse, Sybille; Bekeschus, Sander
    Wound healing is strongly associated with the presence of a balanced content of reactive species in which oxygen-dependent, redox-sensitive signaling represents an essential step in the healing cascade. Numerous studies have demonstrated that cold physical plasma supports wound healing due to its ability to deliver a beneficial mixture of reactive species directly to the cells. Methods: We described a preclinical proof-of-principle-concept of cold plasma use in a dermal, full-thickness wound model in immunocompetent SKH1 mice. Quantitative PCR, Western blot analysis, immunohistochemistry and immunofluorescence were perfomed to evaluate the expression and cellular translocation of essential targets of Nrf2 and p53 signaling as well as immunomodulatory and angiogenetic factors. Apoptosis and proliferation were detected using TUNEL assay and Ki67 staining, respectively. Cytokine levels in serum were measured using bead-based multiplex cytokine analysis. Epidermal keratinocytes and dermal fibroblasts were isolated from mouse skin to perform functional knockdown experiments. Intravital fluorescence analysis was used to illustrate and quantified microvascular features. Results: Plasma exerted significant effects on wound healing in mice, including the promotion of granulation and reepithelialization as a consequence of the migration of skin cells, the balance of antioxidant and inflammatory response, and the early induction of macrophage and neutrophil recruitment to the wound sites. Moreover, through an early and local plasma-induced p53 inhibition with a concomitant stimulation of proliferation, the upregulation of angiogenetic factors, and an increased outgrowth of new vessels, our findings explain why dermal skin repair is accelerated. The cellular redox homeostasis was maintained and cells were defended from damage by a strong modulation of the nuclear E2-related factor (Nrf2) pathway and redox-sensitive p53 signaling. Conclusions: Although acute wound healing is non-problematic, the pathways highlighted that mainly the activation of Nrf2 signaling is a promising strategy for the clinical use of cold plasma in chronic wound healing.
  • Item
    Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden
    (Berlin : Nature Publishing, 2019) Bai, Xiangning; Zhang, Ji; Ambikan, Anoop; Jernberg, Cecilia; Ehricht, Ralf; Scheutz, Flemming; Xiong, Yanwen; Matussek, Andreas
    Hybrid E. coli pathotypes are representing emerging public health threats with enhanced virulence from different pathotypes. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) have been reported to be associated with diarrheal disease and hemolytic uremic syndrome (HUS) in humans. Here, we identified and characterized four clinical STEC/ETEC hybrids from diarrheal patients with or without fever or abdominal pain and healthy contact in Sweden. Rare stx2 subtypes were present in STEC/ETEC hybrids. Stx2 production was detectable in stx2a and stx2e containing strains. Different copies of ETEC virulence marker, sta gene, were found in two hybrids. Three sta subtypes, namely, sta1, sta4 and sta5 were designated, with sta4 being predominant. The hybrids represented diverse and rare serotypes (O15:H16, O187:H28, O100:H30, and O136:H12). Genome-wide phylogeny revealed that these hybrids exhibited close relatedness with certain ETEC, STEC/ETEC hybrid and commensal E. coli strains, implying the potential acquisition of Stx-phages or/and ETEC virulence genes in the emergence of STEC/ETEC hybrids. Given the emergence and public health significance of hybrid pathotypes, a broader range of virulence markers should be considered in the E. coli pathotypes diagnostics, and targeted follow up of cases is suggested to better understand the hybrid infection.
  • Item
    Ex vivo Hyperspectral Autofluorescence Imaging and Localization of Fluorophores in Human Eyes with Age-Related Macular Degeneration
    (Basel : MDPI, 2018) Mohammed, Taariq; Tong, Yuehong; Agee, Julia; Challa, Nayanika; Heintzmann, Rainer; Hammer, Martin; Curcio , Christine A.; Ach, Thomas; Ablonczy, Zsolt; Smith, R. Theodore
    To characterize fluorophore signals from drusen and retinal pigment epithelium (RPE) and their changes in age related macular degeneration (AMD), the authors describe advances in ex vivo hyperspectral autofluorescence (AF) imaging of human eye tissue. Ten RPE flatmounts from eyes with AMD and 10 from eyes without AMD underwent 40× hyperspectral AF microscopic imaging. The number of excitation wavelengths tested was initially two (436 nm and 480 nm), then increased to three (436 nm, 480 nm, and 505 nm). Emission spectra were collected at 10 nm intervals from 420 nm to 720 nm. Non-negative matrix factorization (NMF) algorithms decomposed the hyperspectral images into individual emission spectra and their spatial abundances. These include three distinguishable spectra for RPE fluorophores (S1, S2, and S3) in both AMD and non-AMD eyes, a spectrum for drusen (SDr) only in AMD eyes, and a Bruch’s membrane spectrum that was detectable in normal eyes. Simultaneous analysis of datacubes excited atthree excitation wavelengths revealed more detailed spatial localization of the RPE spectra and SDr within drusen than exciting only at two wavelengths. Within AMD and non-AMD groups, two different NMF initialization methods were tested on each group and converged to qualitatively similar spectra. In AMD, the peaks of the SDr at ~510 nm (436 nm excitation) were particularly consistent. Between AMD and non-AMD groups, corresponding spectra in common, S1, S2, and S3, also had similar peak locations and shapes, but with some differences and further characterization warranted.
  • Item
    The Global Gridded Crop Model Intercomparison phase 1 simulation dataset
    (London : Nature Publ. Group, 2019) Müller, Christoph; Elliott, Joshua; Kelly, David; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Hoek, Steven; Izaurralde, Roberto C.; Jones, Curtis D.; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A. M.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Wang, Xuhui; de Wit, Allard; Yang, Hong
    The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of crop model simulations covering the global ice-free land surface. The dataset consists of annual data fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three different management harmonization levels. Each group submitted data for up to 15 different crops and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses and understanding of crop model performance, potential relationships between productivity and environmental impacts, and insights on how to further improve global gridded crop model frameworks. We describe dataset characteristics and individual model setup narratives. © 2019, The Author(s).