Search Results

Now showing 1 - 10 of 15
  • Item
    Modulating Myeloid Immune Cell Migration Using Multivalently Presented Monosaccharide Ligands for Advanced Immunotherapy
    (Weinheim : Wiley-VCH Verlag, 2019) Taverno, I.; Rodrigo, A.M.; Kandziora, M.; Kuntz, S.; Dernedde, J.; Trautwein, C.; Tacke, F.; Blas-Garcia, A.; Bartneck, M.
    Due to their importance for the outcome of the inflammatory response, the motile myeloid cells are a focus of novel treatment options. The interplay of selectins and their ligands with leukocytes and endothelial cells, which mediate endothelial attachment and transmigration of immune cells, can be modulated by selectin‐binding structures. Here, a library of selectin‐targeting ligands coupled to either gold, silver, iron oxide nanospheres, or quantum dots of 5–10 nm in size is used to systematically study their impact on immune cell motility. The multivalent presentation of the carbohydrate mimetics results in very low sub‐nanomolar binding to L ‐selectin. Using human primary monocytes, granulocytes, lymphocytes, and macrophages, it is shown that the ligands exhibit only minor effects on uptake, whereas the motility of leukocytes is critically affected as observed in migration assays evaluated by flow cytometry. The carbohydrate mimetic ring structure, sulfation, in particular, and the degree of ligand presentation, are constituents which cohere in this process. Specific carbohydrate ligands can thus selectively regulate leukocyte subsets. These data form the basis for advanced immunotherapy which inhibits the amplification of inflammation by restricting leukocyte influx to injured tissue sites. Furthermore, the targeting ligands may complement existing treatment options for inflammatory diseases.
  • Item
    Printability study of metal ion crosslinked PEG-catechol based inks
    (Cold Spring Harbor : Cold Spring Harbor Laboratory, 2019) Włodarczyk-Biegun, Malgorzata K.; Paez, Julieta I.; Villiou, Maria; Feng, Jun; del Campo, Aranzazu
    Inspired by reversible networks present in nature, we have explored the printability of catechol functionalized polyethylene glycol (PEG) based inks with metal-coordination crosslinking. Material formulations containing Al3+, Fe3+ or V3+ as crosslinking ions were tested. The printability and shape fidelity were dependent on the ink composition (metal ion type, pH, PEG molecular weight) and printing parameters (extrusion pressure and printing speed). The relaxation time, recovery rate and viscosity of the inks were analyzed in rheology studies and correlated with thermodynamic and ligand exchange kinetic constants of the dynamic bonds and the printing performance (i.e. shape fidelity of the printed structures). The relevance of the relaxation time and ligand exchange kinetics for printability was demonstrated. Cells seeded on the crosslinked materials were viable, indicating the potential of the formulations to be used as inks for cell encapsulation. The proposed dynamic ink design offers significant flexibility for 3D (bio)printing, and enables straightforward adjustment of the printable formulation to meet application-specific needs.
  • Item
    Switchable Adhesion Surfaces with Enhanced Performance Against Rough Counterfaces
    (Basel : MDPI, 2016) Prieto-López, Lizbeth; Williams, John
    In a recent study, we demonstrated that the pressurization of micro-fluidic features introduced in the subsurface of a soft polymer can be used to actively modify the magnitude of the adhesion to a harder counterface by changing its waviness or long wavelength undulations. In that case, both contacting surfaces had very smooth finishes with root-mean-square roughnesses of less than 20 nm. These values are far from those of many engineering surfaces, which usually have a naturally occurring roughness of between ten and a hundred times this value. In this work, we demonstrate that appropriate surface features, specifically relatively slender “fibrils”, can enhance the ability of a such a soft surface to adhere to a hard, but macroscopically rough, counterface, while still maintaining the possibility of switching the adhesion force from one level to another. Conversely, stiffer more conical surface features can suppress adhesion even against a smooth counterface. Examples of each form of topography can be found in the natural world.
  • Item
    Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration
    (Amsterdam : Elsevier, 2019) Hetmanski, J.H.R.; de, Belly, H.; Busnelli, I.; Waring, T.; Nair, R.V.; Sokleva, V.; Dobre, O.; Cameron, A.; Gauthier, N.; Lamaze, C.; Swift, J.; del, Campo, A.; Starborg, T.; Zech, T.; Goetz, J.G.; Paluch, E.K.; Schwartz, J.-M.; Caswell, P.T.
    In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices. © 2019 The AuthorsCell migration through 3D matrix is critical to developmental and disease processes, but the mechanisms that control rear retraction are poorly understood. Hetmanski et al. show that differential membrane tension allows caveolae to form at the rear of migrating cells and activate the contractile actin cytoskeleton to promote rapid retraction. © 2019 The Authors
  • Item
    Liquid-phase electron microscopy of molecular drug response in breast cancer cells reveals irresponsive cell subpopulations related to lack of HER2 homodimers
    (Bethesda, Md. : American Society for Cell Biology, 2017) Peckys, Diana B.; Korf, Ulrike; Wiemann, Stefan; de Jonge, Niels
    The development of drug resistance in cancer poses a major clinical problem. An example is human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer often treated with anti-HER2 antibody therapies, such as trastuzumab. Because drug resistance is rooted mainly in tumor cell heterogeneity, we examined the drug effect in different subpopulations of SKBR3 breast cancer cells and compared the results with those of a drugresistant cell line, HCC1954. Correlative light microscopy and liquid-phase scanning transmission electron microscopy were used to quantitatively analyze HER2 responses upon drug binding, whereby many tens of whole cells were imaged. Trastuzumab was found to selectively cross-link and down-regulate HER2 homodimers from the plasma membranes of bulk cancer cells. In contrast, HER2 resided mainly as monomers in rare subpopulations of resting and cancer stem cells (CSCs), and these monomers were not internalized after drug binding. The HER2 distribution was hardly influenced by trastuzumab for the HCC1954 cells. These findings show that resting cells and CSCs are irresponsive to the drug and thus point toward a molecular explanation behind the origin of drug resistance. This analytical method is broadly applicable to study membrane protein interactions in the intact plasma membrane, while accounting for cell heterogeneity.
  • Item
    Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba
    (San Diego, Calif. : Elsevier, 2010) Pabisch, S.; Puchegger, S.; Kirchner, H.O.K.; Weiss, I.M.; Peterlik, H.
    The keratin structure in the cortex of peacocks' feathers is studied by X-ray diffraction along the feather, from the calamus to the tip. It changes considerably over the first 5. cm close to the calamus and remains constant for about 1. m along the length of the feather. Close to the tip, the structure loses its high degree of order. We attribute the X-ray patterns to a shrinkage of a cylindrical arrangement of β-sheets, which is not fully formed initially. In the final structure, the crystalline beta-cores are fixed by the rest of the keratin molecule. The hydrophobic residues of the beta-core are locked into a zip-like arrangement. Structurally there is no difference between the blue and the white bird. © 2010 Elsevier Inc.
  • Item
    Studying the Stoichiometry of Epidermal Growth Factor Receptor in Intact Cells using Correlative Microscopy
    ([S.l.] : [s.n.], 2015) Peckys, Diana B.; de Jonge, Niels
    This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.
  • Item
    Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation
    (San Francisco : Public Library of Science, 2019) Müllers, Yannik; Meiser, Ina; Stracke, Frank; Riemann, Iris; Lautenschläger, Franziska; Neubauer, Julia C.; Zimmermann, Heiko
    Cryopreservation is an essential tool to meet the increasing demand for stem cells in medical applications. To ensure maintenance of cell function upon thawing, the preservation of the actin cytoskeleton is crucial, but so far there is little quantitative data on the influence of cryopreservation on cytoskeletal structures. For this reason, our study aims to quantitatively describe cryopreservation induced alterations to F-actin in adherent human mesenchymal stem cells, as a basic model for biomedical applications. Here we have characterised the actin cytoskeleton on single-cell level by calculating the circular standard deviation of filament orientation, F-actin content, and average filament length. Cryo-induced alterations of these parameters in identical cells pre and post cryopreservation provide the basis of our investigation. Differences between the impact of slow-freezing and vitrification are qualitatively analyzed and highlighted. Our analysis is supported by live cryo imaging of the actin cytoskeleton via two photon microscopy. We found similar actin alterations in slow-frozen and vitrified cells including buckling of actin filaments, reduction of F-actin content and filament shortening. These alterations indicate limited functionality of the respective cells. However, there are substantial differences in the frequency and time dependence of F-actin disruptions among the applied cryopreservation strategies; immediately after thawing, cytoskeletal structures show least disruption after slow freezing at a rate of 1°C/min. As post-thaw recovery progresses, the ratio of cells with actin disruptions increases, particularly in slow frozen cells. After 120 min of recovery the proportion of cells with an intact actin cytoskeleton is higher in vitrified than in slow frozen cells. Freezing at 10°C/min is associated with a high ratio of impaired cells throughout the post-thawing culture.
  • Item
    In vitro entero-capillary barrier exhibits altered inflammatory and exosomal communication pattern after exposure to silica nanoparticles
    (Basel : MDPI, 2019) Kasper, J.Y.; Iris, Hermanns, M.; Kraegeloh, A.; Roth, W.; James, Kirkpatrick, C.; Unger, R.E.
    The intestinal microvasculature (iMV) plays multiple pathogenic roles during chronic inflammatory bowel disease (IBD). The iMV acts as a second line of defense and is, among other factors, crucial for the innate immunity in the gut. It is also the therapeutic location in IBD targeting aggravated leukocyte adhesion processes involving ICAM-1 and E-selectin. Specific targeting is stressed via nanoparticulate drug vehicles. Evaluating the iMV in enterocyte barrier models in vitro could shed light on inflammation and barrier-integrity processes during IBD. Therefore, we generated a barrier model by combining the enterocyte cell line Caco-2 with the microvascular endothelial cell line ISO-HAS-1 on opposite sides of a transwell filter-membrane under culture conditions which mimicked the physiological and inflamed conditions of IBD. The IBD model achieved a significant barrier-disruption, demonstrated via transepithelial-electrical resistance (TER), permeability-coefficient (Papp) and increase of sICAM sE-selectin and IL-8. In addition, the impact of a prospective model drug-vehicle (silica nanoparticles, aSNP) on ongoing inflammation was examined. A decrease of sICAM/sE-selectin was observed after aSNP-exposure to the inflamed endothelium. These findings correlated with a decreased secretion of ICAM/E-selectin bearing exosomes/microvesicles, as evaluated via ELISA. Our findings indicate that aSNP treatment of the inflamed endothelium during IBD may hamper exosomal/microvesicular systemic communication. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Distribution of SiO2 nanoparticles in 3D liver microtissues
    (Macclesfield : Dove Medical Press, 2019) Fleddermann, Jana; Susewind, Julia; Peuschel, Henrike; Koch, Marcus; Tavernaro, Isabella; Kraegeloh, Annette
    Introduction: Nanoparticles (NPs) are used in numerous products in technical fields and biomedicine; their potential adverse effects have to be considered in order to achieve safe applications. Besides their distribution in tissues, organs, and cellular localization, their impact and penetration during the process of tissue formation occurring in vivo during liver regeneration are critical steps for establishment of safe nanomaterials. Materials and methods: In this study, 3D cell culture of human hepatocarcinoma cells (HepG2) was used to generate cellular spheroids, serving as in vitro liver microtissues. In order to determine their differential distribution and penetration depth in HepG2 spheroids, SiO2 NPs were applied either during or after spheroid formation. The NP penetration was comprehensively studied using confocal laser scanning microscopy and scanning electron microscopy. Results: Spheroids were exposed to 100 µg mL-1 SiO2 NPs either at the beginning of spheroid formation, or during or after formation of spheroids. Microscopy analyses revealed that NP penetration into the spheroid is limited. During and after spheroid formation, SiO2 NPs penetrated about 20 µm into the spheroids, corresponding to about three cell layers. In contrast, because of the addition of SiO2 NPs simultaneously to cell seeding, NP agglomerates were located also in the spheroid center. Application of SiO2 NPs during the process of spheroid formation had no impact on final spheroid size. Conclusion: Understanding the distribution of NPs in tissues is essential for biomedical applications. The obtained results indicate that NPs show only limited penetration into already formed tissue, which is probably caused by the alteration of the tissue structure and cell packing density during the process of spheroid formation.