Search Results

Now showing 1 - 6 of 6
  • Item
    Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain
    (Göttingen : Copernicus, 2014) Chen, J.; Zhao, C.S.; Ma, N.; Yan, P.
    The relative humidity (RH) dependence of aerosol light scattering is an essential parameter for accurate estimation of the direct radiative forcing induced by aerosol particles. Because of insufficient information on aerosol hygroscopicity in climate models, a more detailed parameterization of hygroscopic growth factors and resulting optical properties with respect to location, time, sources, aerosol chemistry and meteorology are urgently required. In this paper, a retrieval method to calculate the aerosol hygroscopicity parameter, κ, is proposed based on the in situ measured aerosol light scattering enhancement factor, namely f(RH), and particle number size distribution (PNSD) obtained from the HaChi (Haze in China) campaign. Measurements show that f(RH) increases sharply with increasing RH, and that the time variance of f(RH) is much greater at higher RH. A sensitivity analysis reveals that the f(RH) is more sensitive to the aerosol hygroscopicity than PNSD. f(RH) for polluted cases is distinctly higher than that for clean periods at a specific RH. The derived equivalent κ, combined with the PNSD measurements, is applied in the prediction of the cloud condensation nuclei (CCN) number concentration. The predicted CCN number concentration with the derived equivalent κ agrees well with the measured ones, especially at high supersaturations. The proposed calculation algorithm of κ with the f(RH) measurements is demonstrated to be reasonable and can be widely applied.
  • Item
    Continuous vertical aerosol profiling with a multi-wavelength Raman polarization lidar over the Pearl River Delta, China
    (Katlenburg-Lindau : EGU, 2017) Heese, Birgit; Baars, Holger; Bohlmann, Stephanie; Althausen, Dietrich; Deng, Ruru
    A dataset of particle optical properties of the highly polluted atmosphere over the Pearl River Delta (PRD), Guangzhou, China, is presented in this paper. The data were derived from the measurements of a multiwavelength Raman and depolarization lidar PollyXT and a co-located AERONET sun photometer. The measurement campaign was conducted from November 2011 to mid-June 2012. These are the first Raman lidar measurements in the PRD that lasted for several months. A mean value of aerosol optical depth (AOD) of 0.54±0.33 was observed by the sun photometer at 500 nm in the polluted atmosphere over this megacity for the whole measurement period. The lidar profiles frequently show lofted aerosol layers, which reach altitudes of up to 2 to 3 km and, especially during the spring season, up to 5 km. These layers contain between 12 and 56% of the total AOD, with the highest values in spring. The aerosol types in these lofted layers are classified by their optical properties. The observed lidar ratio values range from 30 to 80 sr with a mean value of 48.0±10.7 sr at 532 nm. The linear particle depolarization ratio at 532 nm lies mostly below 5 %, with a mean value of 3.6±3.7 %. The majority of the Ångström exponents lie between 0.5 and 1.5, indicating a mixture of fine- and coarsemode aerosols. These results reveal that mostly urban pollution particles mixed with particles produced from biomass and industrial burning are present in the atmosphere above the Pearl River Delta. Trajectory analyses show that these pollution mixtures arise mainly from local and regional sources.
  • Item
    A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system
    (Katlenburg-Lindau : EGU, 2017) Kuang, Ye; Zhao, Chunsheng; Tao, Jiangchuan; Bian, Yuxuan; Ma, Nan; Zhao, Gang
    Aerosol hygroscopicity is crucial for understanding roles of aerosol particles in atmospheric chemistry and aerosol climate effects. Light-scattering enhancement factor f (RH, λ) is one of the parameters describing aerosol hygroscopicity, which is defined as f (RH, λ) = δsp(RH, λ)=δsp(dry, λ), where δsp(RH, λ) or δsp(dry, λ) represents δsp at wavelength λ under certain relative humidity (RH) or dry conditions. Traditionally, an overall hygroscopicity parameter κ can be retrieved from measured f (RH, λ), hereinafter referred to as κf(RH), by combining concurrently measured particle number size distribution (PNSD) and mass concentration of black carbon. In this paper, a new method is proposed to directly derive κf(RH) based only on measurements from a three-wavelength humidified nephelometer system. The advantage of this newly proposed approach is that κf(RH) can be estimated without any additional information about PNSD and black carbon. This method is verified with measurements from two different field campaigns. Values of κf(RH) estimated from this new method agree very well with those retrieved by using the traditional method: all points lie near the 1 : 1 line and the square of correlation coefficient between them is 0.99. The verification results demonstrate that this newly proposed method of deriving κf(RH) is applicable at different sites and in seasons of the North China Plain and might also be applicable in other regions around the world.
  • Item
    Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility
    (Katlenburg-Lindau : EGU, 2020) Wang, Yu; Chen, Ying; Wu, Zhijun; Shang, Dongjie; Bian, Yuxuan; Du, Zhuofei; Schmitt, Sebastian H.; Su, Rong; Gkatzelis, Georgios I.; Schlag, Patrick; Hohaus, Thorsten; Voliotis, Aristeidis; Lu, Keding; Zeng, Limin; Zhao, Chunsheng; Alfarra, M. Rami; McFiggans, Gordon; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Zhang, Yuanhang; Hu, Min
    As has been the case in North America and western Europe, the SO2 emissions have substantially reduced in the North China Plain (NCP) in recent years. Differential rates of reduction in SO2 and NOx concentrations result in the frequent occurrence of particulate matter pollution dominated by nitrate (pNO−3) over the NCP. In this study, we observed a polluted episode with the particulate nitrate mass fraction in nonrefractory PM1 (NR-PM1) being up to 44 % during wintertime in Beijing. Based on this typical pNO−3-dominated haze event, the linkage between aerosol water uptake and pNO−3 enhancement, further impacting on visibility degradation, has been investigated based on field observations and theoretical calculations. During haze development, as ambient relative humidity (RH) increased from ∼10 % to 70 %, the aerosol particle liquid water increased from ∼1 µg m−3 at the beginning to ∼75 µg m−3 in the fully developed haze period. The aerosol liquid water further increased the aerosol surface area and volume, enhancing the condensational loss of N2O5 over particles. From the beginning to the fully developed haze, the condensational loss of N2O5 increased by a factor of 20 when only considering aerosol surface area and volume of dry particles, while increasing by a factor of 25 when considering extra surface area and volume due to water uptake. Furthermore, aerosol liquid water favored the thermodynamic equilibrium of HNO3 in the particle phase under the supersaturated HNO3 and NH3 in the atmosphere. All the above results demonstrated that pNO−3 is enhanced by aerosol water uptake with elevated ambient RH during haze development, in turn facilitating the aerosol take-up of water due to the hygroscopicity of particulate nitrate salt. Such mutual promotion between aerosol particle liquid water and particulate nitrate enhancement can rapidly degrade air quality and halve visibility within 1 d. Reduction of nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is essential in mitigating severe haze events in the NCP.
  • Item
    The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China
    (Katlenburg-Lindau : EGU, 2020) Li, Jiarong; Zhu, Chao; Chen, Hui; Zhao, Defeng; Xue, Likun; Wang, Xinfeng; Li, Hongyong; Liu, Pengfei; Liu, Junfeng; Zhang, Chenglong; Mu, Yujing; Zhang, Wenjin; Zhang, Luming; Herrmann, Hartmut; Li, Kai; Liu, Min; Chen, Jianmin
    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and the behaviours of clouds and their influence on climate. In an attempt to better understand the microphysical properties of cloud droplets, the simultaneous variations in aerosol microphysics and their potential interactions during cloud life cycles in the North China Plain, an intensive observation took place from 17 June to 30 July 2018 at the summit of Mt. Tai. Cloud microphysical parameters were monitored simultaneously with number concentrations of cloud condensation nuclei (NCCN) at different supersaturations, PM2:5 mass concentrations, particle size distributions and meteorological parameters. Number concentrations of cloud droplets (NC), liquid water content (LWC) and effective radius of cloud droplets (reff) show large variations among 40 cloud events observed during the campaign. The low values of reff and LWC observed at Mt. Tai are comparable with urban fog. Clouds on clean days are more susceptible to the change in concentrations of particle number (NP), while clouds formed on polluted days might be more sensitive to meteorological parameters, such as updraft velocity and cloud base height. Through studying the size distributions of aerosol particles and cloud droplets, we find that particles larger than 150 nm play important roles in forming cloud droplets with the size of 5-10 μm. In general, LWC consistently varies with reff. As NC increases, reff changes from a trimodal distribution to a unimodal distribution and shifts to smaller size mode. By assuming a constant cloud thickness and ignoring any lifetime effects, increase in NC and decrease in reff would increase cloud albedo, which may induce a cooling effect on the local climate system. Our results contribute valuable information to enhance the understanding of cloud and aerosol properties, along with their potential interactions on the North China plain. © Author(s) 2020.
  • Item
    Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in polluted northern China: Roles of aerosol water content and chemical composition
    (Katlenburg-Lindau : EGU, 2018) Tham, Yee Jun; Wang, Zhe; Li, Qinyi; Wang, Weihao; Wang, Xinfeng; Lu, Keding; Ma, Nan; Yan, Chao; Kecorius, Simonas; Wiedensohler, Alfred; Zhang, Yuanhang; Wang, Tao
    Heterogeneous uptake of dinitrogen pentoxide (N2O5) and production of nitryl chloride (ClNO2) are important nocturnal atmospheric processes that have significant implications for the production of secondary pollutants. However, the understanding of N2O5 uptake processes and ClNO2 production remains limited, especially in China. This study presents a field investigation of the N2O5 heterogeneous uptake coefficient (γ(N2O5)) and ClNO2 production yield (ϕ) in a polluted area of northern China during the summer of 2014. The N2O5 uptake coefficient and ClNO2 yield were estimated by using the simultaneously measured ClNO2 and total nitrate in 10 selected cases, which have concurrent increases in the ClNO2 and nitrate concentrations and relatively stable environmental conditions. The determined γ(N2O5) and ϕ values varied greatly, with an average of 0.022 for γ(N2O5) (±0.012, standard deviation) and 0.34 for ϕ (±0.28, standard deviation). The variations in γ(N2O5) could not be fully explained by the previously derived parameterizations of N2O5 uptake that consider nitrate, chloride, and the organic coating. Heterogeneous uptake of N2O5 was found to have a strong positive dependence on the relative humidity and aerosol water content. This result suggests that the heterogeneous uptake of N2O5 in Wangdu is governed mainly by the amount of water in the aerosol, and is strongly water limited, which is different from most of the field observations in the US and Europe. The ClNO2 yield estimated from the parameterization was also overestimated comparing to that derived from the observation. The observation-derived ϕ showed a decreasing trend with an increasing ratio of acetonitrile to carbon monoxide, an indicator of biomass burning emissions, which suggests a possible suppressive effect on the production yield of ClNO2 in the plumes influenced by biomass burning in this region. The findings of this study illustrate the need to improve our understanding and to parameterize the key factors for γ(N2O5) and ϕ to accurately assess photochemical and haze pollution.