Search Results

Now showing 1 - 2 of 2
  • Item
    Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn
    ([London] : Nature Publishing Group UK, 2019) Reichlova, Helena; Janda, Tomas; Godinho, Joao; Markou, Anastasios; Kriegner, Dominik; Schlitz, Richard; Zelezny, Jakub; Soban, Zbynek; Bejarano, Mauricio; Schultheiss, Helmut; Nemec, Petr; Jungwirth, Tomas; Felser, Claudia; Wunderlich, Joerg; Goennenwein, Sebastian T. B.
    Non-collinear antiferromagnets are revealing many unexpected phenomena and they became crucial for the field of antiferromagnetic spintronics. To visualize and prepare a well-defined domain structure is of key importance. The spatial magnetic contrast, however, remains extraordinarily difficult to be observed experimentally. Here, we demonstrate a magnetic imaging technique based on a laser induced local thermal gradient combined with detection of the anomalous Nernst effect. We employ this method in one the most actively studied representatives of this class of materials—Mn3Sn. We demonstrate that the observed contrast is of magnetic origin. We further show an algorithm to prepare a well-defined domain pattern at room temperature based on heat assisted recording principle. Our study opens up a prospect to study spintronics phenomena in non-collinear antiferromagnets with spatial resolution.
  • Item
    Polariton-driven phonon laser
    ([London] : Nature Publishing Group UK, 2020) Chafatinos, D.L.; Kuznetsov, A. .; Anguiano, S.; Bruchhausen, A.E.; Reynoso, A.A.; Biermann, K.; Santos, P.V.; Fainstein, A.
    Efficient generation of phonons is an important ingredient for a prospective electrically-driven phonon laser. Hybrid quantum systems combining cavity quantum electrodynamics and optomechanics constitute a novel platform with potential for operation at the extremely high frequency range (30–300 GHz). We report on laser-like phonon emission in a hybrid system that optomechanically couples polariton Bose-Einstein condensates (BECs) with phonons in a semiconductor microcavity. The studied system comprises GaAs/AlAs quantum wells coupled to cavity-confined optical and vibrational modes. The non-resonant continuous wave laser excitation of a polariton BEC in an individual trap of a trap array, induces coherent mechanical self-oscillation, leading to the formation of spectral sidebands displaced by harmonics of the fundamental 20 GHz mode vibration frequency. This phonon “lasing” enhances the phonon occupation five orders of magnitude above the thermal value when tunable neighbor traps are red-shifted with respect to the pumped trap BEC emission at even harmonics of the vibration mode. These experiments, supported by a theoretical model, constitute the first demonstration of coherent cavity optomechanical phenomena with exciton polaritons, paving the way for new hybrid designs for quantum technologies, phonon lasers, and phonon-photon bidirectional translators.