Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Patterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical vs. electrical polarization effects

2021, García-Valenzuela, Aurelio, Fakhfouri, Armaghan, Oliva-Ramírez, Manuel, Rico-Gavira, Victor, Rojas, Teresa Cristina, Alvarez, Rafael, Menzel, Siegfried B., Palmero, Alberto, Winkler, Andreas, González-Elipe, Agustín R.

Nanostructuration and 2D patterning of thin films are common strategies to fabricate biomimetic surfaces and components for microfluidic, microelectronic or photonic applications. This work presents the fundamentals of a surface nanotechnology procedure for laterally tailoring the nanostructure and crystalline structure of thin films that are plasma deposited onto acoustically excited piezoelectric substrates. Using magnetron sputtering as plasma technique and TiO2 as case example, it is demonstrated that the deposited films depict a sub-millimetre 2D pattern that, characterized by large lateral differences in nanostructure, density (up to 50%), thickness, and physical properties between porous and dense zones, reproduces the wave features distribution of the generated acoustic waves (AW). Simulation modelling of the AW propagation and deposition experiments carried out without plasma and under alternative experimental conditions reveal that patterning is not driven by the collision of ad-species with mechanically excited lattice atoms of the substrate, but emerges from their interaction with plasma sheath ions locally accelerated by the AW-induced electrical polarization field developed at the substrate surface and growing film. The possibilities of the AW activation as a general approach for the tailored control of nanostructure, pattern size, and properties of thin films are demonstrated through the systematic variation of deposition conditions and the adjustment of AW operating parameters.

Loading...
Thumbnail Image
Item

Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation

2021, Mendes, Rafael G., Ta, Huy Q., Yang, Xiaoqin, Bachmatiuk, Alicja, Praus, Petr, Mamakhel, Aref, Iversen, Bo B., Su, Ren, Gemming, Thomas, Rümmeli, Mark H.

Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species. However, the precise nitrogen group from which N is removed from g-C3N4 (C–N–C, [double bond, length as m-dash]NH or –NH2) is unclear. Moreover, the rate of degradation increases with decreasing electron acceleration voltage, suggesting that inelastic scattering events (radiolysis) dominate over elastic events (knock-on damage). The rate of degradation by removing N atoms is also sensitive to the current density. Hence, we demonstrate that both the electron acceleration voltage and the current density are parameters with which one can use to control the stoichiometry. Moreover, as N species were preferentially removed, the d-spacing of the carbon nitride structure increased. These findings provide a deeper understanding of g-C3N4.

Loading...
Thumbnail Image
Item

Correction: Design and characterization of a plasmonic Doppler grating for azimuthal angle-resolved surface plasmon resonances

2021, See, Kel-Meng, Lin, Fan-Cheng, Huang, Jer-Shing

The authors regret that Fig. 1e of the original paper contained an error in the curves displayed for the silver, aluminium and palladium gratings. Specifically, a different value of the ‘index of the environment’ (1.65) was used in the calculation of these curves compared to that used for calculating the optical response of the gold grating (1.33). The correct Fig. 1 below, displays the curves calculated with the same value of the index of the environment (1.33). No amendments are made to the caption of Fig. 1 or the other sub-figures presented in the figure. This error does not affect any of the results or conclusions reported in the paper; only the display of the figure. (Figure Presented) The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Loading...
Thumbnail Image
Item

The interaction of chondroitin sulfate with a lipid monolayer observed by using nonlinear vibrational spectroscopy

2021, Szekeres, Gergo Peter, Krekic, Szilvia, Miller, Rebecca L., Mero, Mark, Pagel, Kevin, Heiner, Zsuzsanna

The first vibrational sum-frequency generation (VSFG) spectra of chondroitin sulfate (CS) interacting with dipalmitoyl phosphatidylcholine (DPPC) at air–liquid interface are reported here, collected at a laser repetition rate of 100 kHz. By studying the VSFG spectra in the regions of 1050–1450 cm−1, 2750–3180 cm−1, and 3200–3825 cm−1, it was concluded that in the presence of Ca2+ ions, the head groups together with the head-group-bound water molecules in the DPPC monolayer are strongly influenced by the interaction with CS, while the organization of the phospholipid tails remains mostly unchanged. The interactions were observed at a CS concentration below 200 nM, which exemplifies the potential of VSFG in studying biomolecular interactions at low physiological concentrations. The VSFG spectra recorded in the O–H stretching region at chiral polarization combination imply that CS molecules are organized into ordered macromolecular superstructures with a chiral secondary structure.

Loading...
Thumbnail Image
Item

Erratum: Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging (Nanoscale (2021) DOI: 10.1039/D1NR01806J)

2021, Carnis, Jerome, Kirner, Felizitas, Lapkin, Dmitry, Sturm, Sebastian, Kim, Young Yong, Baburin, Igor A., Khubbutdinov, Ruslan, Ignatenko, Alexandr, Iashina, Ekaterina, Mistonov, Alexander, Steegemans, Tristan, Wieck, Thomas, Gemming, Thomas, Lubk, Axel, Lazarev, Sergey, Sprung, Michael, Vartanyants, Ivan A., Sturm, Elena V.

Correction for ‘Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging’ by Jerome Carnis et al., Nanoscale, 2021, DOI: 10.1039/D1NR01806J.

Loading...
Thumbnail Image
Item

Curled cation structures accelerate the dynamics of ionic liquids

2021, Rauber, Daniel, Philippi, Frederik, Kuttich, Björn, Becker, Julian, Kraus, Tobias, Hunt, Patricia, Welton, Tom, Hempelmann, Rolf, Kay, Christopher W.M.

Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids – slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation–anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure–property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure–property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.

Loading...
Thumbnail Image
Item

Nanomechanics of self-assembled DNA building blocks

2021, Penth, Michael, Schellnhuber, Kordula, Bennewitz, Roland, Blass, Johanna

DNA has become a powerful platform to design functional nanodevices. DNA nanodevices are often composed of self-assembled DNA building blocks that differ significantly from the structure of native DNA. In this study, we present Flow Force Microscopy as a massively parallel approach to study the nanomechanics of DNA self-assemblies on the single-molecular level. The high-throughput experiments performed in a simple microfluidic channel enable statistically meaningful studies with nanometer scale precision in a time frame of several minutes. A surprisingly high flexibility was observed for a typical construct used in DNA origami, reflected in a persistence length of 10.2 nm, a factor of five smaller than for native DNA. The enhanced flexibility is attributed to the discontinuous backbone of DNA self-assemblies that facilitate base pair opening by thermal fluctuations at the end of hybridized oligomers. We believe that the results will contribute to the fundamental understanding of DNA nanomechanics and help to improve the design of DNA nanodevices with applications in biological analysis and clinical research.

Loading...
Thumbnail Image
Item

Two-photon, visible light water splitting at a molecular ruthenium complex

2021, Schneidewind, Jacob, Argüello Cordero, Miguel A., Junge, Henrik, Lochbrunner, Stefan, Beller, Matthias

Water splitting to give molecular oxygen and hydrogen or the corresponding protons and electrons is a fundamental four-electron redox process, which forms the basis of photosynthesis and is a promising approach to convert solar into chemical energy. Artificial water splitting systems have struggled with orchestrating the kinetically complex absorption of four photons as well as the difficult utilization of visible light. Based on a detailed kinetic, spectroscopic and computational study of Milstein's ruthenium complex, we report a new mechanistic paradigm for water splitting, which requires only two photons and offers a new method to extend the range of usable wavelengths far into the visible region. We show that two-photon water splitting is enabled by absorption of the first, shorter wavelength photon, which produces an intermediate capable of absorbing the second, longer wavelength photon (up to 630 nm). The second absorption then causes O–O bond formation and liberation of O2. Theoretical modelling shows that two-photon water splitting can be used to achieve a maximum solar-to-hydrogen efficiency of 18.8%, which could be increased further to 28.6% through photochemical instead of thermal H2 release. It is therefore possible to exceed the maximum efficiency of dual absorber systems while only requiring a single catalyst. Due to the lower kinetic complexity, intrinsic utilization of a wide wavelength range and high-performance potential, we believe that this mechanism will inspire the development of a new class of water splitting systems that go beyond the reaction blueprint of photosynthesis.

Loading...
Thumbnail Image
Item

Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions

2021, Malerz, Sebastian, Trinter, Florian, Hergenhahn, Uwe, Ghrist, Aaron, Ali, Hebatallah, Nicolas, Christophe, Saak, Clara-Magdalena, Richter, Clemens, Hartweg, Sebastian, Nahon, Laurent, Lee, Chin, Goy, Claudia, Neumark, Daniel M, Meijer, Gerard, Wilkinson, Iain, Winter, Bernd, Thürmer, Stephan

We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10–14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.

Loading...
Thumbnail Image
Item

Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics

2021, Zhu, Taishan, He, Ran, Gong, Sheng, Xie, Tian, Gorai, Prashun, Nielsch, Kornelius, Grossman, Jeffrey C.

Thermoelectric power generation represents a promising approach to utilize waste heat. The most effective thermoelectric materials exhibit low thermal conductivity κ. However, less than 5% out of about 105 synthesized inorganic materials are documented with their κ values, while for the remaining 95% κ values are missing and challenging to predict. In this work, by combining graph neural networks and random forest approaches, we predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database, and chart the structural chemistry of κ into extended van-Arkel triangles. Together with the newly developed κ map and our theoretical tool, we identify rare-earth chalcogenides as promising candidates, of which we measured ZT exceeding 1.0. We note that the κ chart can be further explored, and our computational and analytical tools are applicable generally for materials informatics.