Search Results

Now showing 1 - 2 of 2
  • Item
    Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex
    (London : Springer Nature, 2019) Schneidewind, Judith; Krause, Frank; Bocola, Marco; Stadler, Andreas Maximilian; Davari, Mehdi D.; Schwaneberg, Ulrich; Jaeger, Karl-Erich; Krauss, Ulrich
    Photosynthetic organisms employ two different enzymes for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide), yielding the chlorophyll precursor chlorophyllide. First, a nitrogenase-like, light-independent (dark-operative) Pchlide oxidoreductase and secondly, a light-dependent Pchlide oxidoreductase (LPOR). For the latter enzyme, despite decades of research, no structural information is available. Here, we use protein structure modelling, molecular dynamics (MD) simulations combined with multi-wavelength analytical ultracentrifugation (MWA-AUC) and small angle X-ray scattering (SAXS) experiments to derive a consensus model of the LPOR apoprotein and the substrate/cofactor/LPOR ternary complex. MWA-AUC and SAXS experiments independently demonstrate that the apoprotein is monomeric, while ternary complex formation induces dimerization. SAXS-guided modelling studies provide a full-length model of the apoprotein and suggest a tentative mode of dimerization for the LPOR ternary complex, supported by published cross-link constraints. Our study provides a first impression of the LPOR structural organization.
  • Item
    A smart polymer for sequence-selective binding, pulldown, and release of DNA targets
    (London : Springer Nature, 2020) Krieg, Elisha; Gupta, Krishna; Dahl, Andreas; Lesche, Mathias; Boye, Susanne; Lederer, Albena; Shih, William M.
    Selective isolation of DNA is crucial for applications in biology, bionanotechnology, clinical diagnostics and forensics. We herein report a smart methanol-responsive polymer (MeRPy) that can be programmed to bind and separate single- as well as double-stranded DNA targets. Captured targets are quickly isolated and released back into solution by denaturation (sequence-agnostic) or toehold-mediated strand displacement (sequence-selective). The latter mode allows 99.8% efficient removal of unwanted sequences and 79% recovery of highly pure target sequences. We applied MeRPy for the depletion of insulin, glucagon, and transthyretin cDNA from clinical next-generation sequencing (NGS) libraries. This step improved the data quality for low-abundance transcripts in expression profiles of pancreatic tissues. Its low cost, scalability, high stability and ease of use make MeRPy suitable for diverse applications in research and clinical laboratories, including enhancement of NGS libraries, extraction of DNA from biological samples, preparative-scale DNA isolations, and sorting of DNA-labeled non-nucleic acid targets. © 2020, The Author(s).