Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)

2020, Levermann, Anders, Winkelmann, Ricarda, Albrecht, Torsten, Goelzer, Heiko, Golledge, Nicholas R., Greve, Ralf, Huybrechts, Philippe, Jordan, Jim, Leguy, Gunter, Martin, Daniel, Morlighem, Mathieu, Pattyn, Frank, Pollard, David, Quiquet, Aurelien, Rodehacke, Christian, Seroussi, Helene, Sutter, Johannes, Zhang, Tong, Van Breedam, Jonas, Calov, Reinhard, DeConto, Robert, Dumas, Christophe, Garbe, Julius, Gudmundsson, G. Hilmar, Hoffman, Matthew J., Humbert, Angelika, Kleiner, Thomas, Lipscomb, William H., Meinshausen, Malte, Ng, Esmond, Nowicki, Sophie M.J., Perego, Mauro, Price, Stephen F., Saito, Fuyuki, Schlegel, Nicole-Jeanne, Sun, Sainan, van de Wal, Roderik S.W.

The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain the ice flow response to the individual global warming path. The model median for the observational period from 1992 to 2017 of the ice loss due to basal ice shelf melting is 10.2 mm, with a likely range between 5.2 and 21.3 mm. For the same period the Antarctic ice sheet lost mass equivalent to 7.4mm of global sea level rise, with a standard deviation of 3.7mm (Shepherd et al., 2018) including all processes, especially surface-mass-balance changes. For the unabated warming path, Representative Concentration Pathway 8.5 (RCP8.5), we obtain a median contribution of the Antarctic ice sheet to global mean sea level rise from basal ice shelf melting within the 21st century of 17 cm, with a likely range (66th percentile around the mean) between 9 and 36 cm and a very likely range (90th percentile around the mean) between 6 and 58 cm. For the RCP2.6 warming path, which will keep the global mean temperature below 2 °C of global warming and is thus consistent with the Paris Climate Agreement, the procedure yields a median of 13 cm of global mean sea level contribution. The likely range for the RCP2.6 scenario is between 7 and 24 cm, and the very likely range is between 4 and 37 cm. The structural uncertainties in the method do not allow for an interpretation of any higher uncertainty percentiles.We provide projections for the five Antarctic regions and for each model and each scenario separately. The rate of sea level contribution is highest under the RCP8.5 scenario. The maximum within the 21st century of the median value is 4 cm per decade, with a likely range between 2 and 9 cm per decade and a very likely range between 1 and 14 cm per decade. © Author(s) 2020.

Loading...
Thumbnail Image
Item

The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6

2020, Goelzer, Heiko, Nowicki, Sophie, Payne, Anthony, Larour, Eric, Seroussi, Helene, Lipscomb, William H., Gregory, Jonathan, Abe-Ouchi, Ayako, Shepherd, Andrew, Simon, Erika, Agosta, Cécile, Alexander, Patrick, Aschwanden, Andy, Barthel, Alice, Calov, Reinhard, Chambers, Christopher, Choi, Youngmin, Cuzzone, Joshua, Dumas, Christophe, Edwards, Tamsin, Felikson, Denis, Fettweis, Xavier, Golledge, Nicholas R., Greve, Ralf, Humbert, Angelika, Huybrechts, Philippe, Le clec'h, Sebastien, Lee, Victoria, Leguy, Gunter, Little, Chris, Lowry, Daniel P., Morlighem, Mathieu, Nias, Isabel, Quiquet, Aurelien, Rückamp, Martin, Schlegel, Nicole-Jeanne, Slater, Donald A., Smith, Robin S., Straneo, Fiammetta, Tarasov, Lev, van de Wal, Roderik, van den Broeke, Michiel

The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90-50 and 32-17mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. © Author(s) 2020.

Loading...
Thumbnail Image
Item

SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise

2022, Martínez Montero, Marina, Crucifix, Michel, Couplet, Victor, Brede, Nuria, Botta, Nicola

We present SURFER, a novel reduced model for estimating the impact of CO2 emissions and solar radiation modification options on sea level rise and ocean acidification over timescales of several thousands of years. SURFER has been designed for the analysis of CO2 emission and solar radiation modification policies, for supporting the computation of optimal (CO2 emission and solar radiation modification) policies and for the study of commitment and responsibility under uncertainty. The model is based on a combination of conservation laws for the masses of atmospheric and oceanic carbon and for the oceanic temperature anomalies, and of ad-hoc parameterisations for the different sea level rise contributors: ice sheets, glaciers and ocean thermal expansion. It consists of 9 loosely coupled ordinary differential equations, is understandable, fast and easy to modify and calibrate. It reproduces the results of more sophisticated, high-dimensional earth system models on timescales up to millennia.

Loading...
Thumbnail Image
Item

ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century

2020, Seroussi, Hélène, Nowicki, Sophie, Payne, Antony J., Goelzer, Heiko, Lipscomb, William H., Abe-Ouchi, Ayako, Agosta, Cécile, Albrecht, Torsten, Asay-Davis, Xylar, Barthel, Alice, Calov, Reinhard, Cullather, Richard, Dumas, Christophe, Galton-Fenzi, Benjamin K., Gladstone, Rupert, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hattermann, Tore, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Jourdain, Nicolas C., Kleiner, Thomas, Larour, Eric, Leguy, Gunter R., Lowry, Daniel P., Little, Chistopher M., Morlighem, Mathieu, Pattyn, Frank, Pelle, Tyler, Price, Stephen F., Quiquet, Aurélien, Reese, Ronja, Schlegel, Nicole-Jeanne, Shepherd, Andrew, Simon, Erika, Smith, Robin S., Straneo, Fiammetta, Sun, Sainan, Trusel, Luke D., Van Breedam, Jonas, van de Wal, Roderik S. W., Winkelmann, Ricarda, Zhao, Chen, Zhang, Tong, Zwinger, Thomas

Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica. © Author(s) 2020.

Loading...
Thumbnail Image
Item

The tipping points and early warning indicators for Pine Island Glacier, West Antarctica

2021-3-25, Rosier, Sebastian H. R., Reese, Ronja, Donges, Jonathan F., De Rydt, Jan, Gudmundsson, G. Hilmar, Winkelmann, Ricarda

Mass loss from the Antarctic Ice Sheet is the main source of uncertainty in projections of future sea-level rise, with important implications for coastal regions worldwide. Central to ongoing and future changes is the marine ice sheet instability: once a critical threshold, or tipping point, is crossed, ice internal dynamics can drive a self-sustaining retreat committing a glacier to irreversible, rapid and substantial ice loss. This process might have already been triggered in the Amundsen Sea region, where Pine Island and Thwaites glaciers dominate the current mass loss from Antarctica, but modelling and observational techniques have not been able to establish this rigorously, leading to divergent views on the future mass loss of the West Antarctic Ice Sheet. Here, we aim at closing this knowledge gap by conducting a systematic investigation of the stability regime of Pine Island Glacier. To this end we show that early warning indicators in model simulations robustly detect the onset of the marine ice sheet instability. We are thereby able to identify three distinct tipping points in response to increases in ocean-induced melt. The third and final event, triggered by an ocean warming of approximately 1.2 ∘C from the steady-state model configuration, leads to a retreat of the entire glacier that could initiate a collapse of the West Antarctic Ice Sheet.

Loading...
Thumbnail Image
Item

Timescales of outlet-glacier flow with negligible basal friction: Theory, observations and modeling

2023, Feldmann, Johannes, Levermann, Anders

The timescales of the flow and retreat of Greenland's and Antarctica's outlet glaciers and their potential instabilities are arguably the largest uncertainty in future sea-level projections. Here we derive a scaling relation that allows the comparison of the timescales of observed complex ice flow fields with geometric similarity. The scaling relation is derived under the assumption of fast, laterally confined, geometrically similar outlet-glacier flow over a slippery bed, i.e., with negligible basal friction. According to the relation, the time scaling of the outlet flow is determined by the product of the inverse of (1) the fourth power of the width-To-length ratio of its confinement, (2) the third power of the confinement depth and (3) the temperature-dependent ice softness. For the outflow at the grounding line of streams with negligible basal friction, this means that the volume flux is proportional to the ice softness and the bed depth, but goes with the fourth power of the gradient of the bed and with the fifth power of the width of the stream. We show that the theoretically derived scaling relation is supported by the observed velocity scaling of outlet glaciers across Greenland as well as by idealized numerical simulations of marine ice-sheet instabilities (MISIs) as found in Antarctica. Assuming that changes in the ice-flow velocity due to ice-dynamic imbalance are proportional to the equilibrium velocity, we combine the scaling relation with a statistical analysis of the topography of 13 MISI-prone Antarctic outlets. Under these assumptions, the timescales in response to a potential destabilization are fastest for Thwaites Glacier in West Antarctica and Mellor, Ninnis and Cook Glaciers in East Antarctica; between 16 and 67 times faster than for Pine Island Glacier. While the applicability of our results is limited by several strong assumptions, the utilization and potential further development of the presented scaling approach may help to constrain timescale estimates of outlet-glacier flow, augmenting the commonly exploited and comparatively computationally expensive approach of numerical modeling.