Search Results

Now showing 1 - 2 of 2
  • Item
    Tuning of Smart Multifunctional Polymer Coatings Made by Zwitterionic Phosphorylcholines
    (Weinheim : Wiley-VCH, 2020) Münch, Alexander S.; Adam, Stefan; Fritzsche, Tina; Uhlmann, Petra
    In the last years, the generation of multifunctional coatings has been moved into the focus of interface modifications to expand the spectrum of material applications and to introduce new smart properties. Herein a promising multifunctional and universally usable coating with simultaneous antifouling, easy-to-clean, and anti-fog functionality is presented based on smart polymer films consisting of copolymers with 2-methacryloyloxyethyl phosphorylcholine (MPC), realizing the function of the film and photoreactive 4-benzophenyl methacrylate (BPO), which is responsible for stability and crosslinking. The easy-to-clean effect is demonstrated qualitatively and quantitatively by oil droplet detachment experiments. The antifouling behavior against different germs is investigated by cell adhesion experiments. Furthermore the anti-fog performance is shown by breathing on the surfaces. To study the influence of the different amounts of copolymerized BPO, the grafted films are characterized by atomic force microscopy (AFM), infrared spectroscopy (ATR-FTIR), as well as contact angle measurements. In situ spectroscopic ellipsometry is performed to investigate the swelling behavior of the thin films as a function of the time of UV-irradiation. It is found that a degree of swelling of 15 and a water contact angle of less than 12° are the key parameters necessary for the generation of multifunctional coatings. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Stretchable Thin Film Mechanical-Strain-Gated Switches and Logic Gate Functions Based on a Soft Tunneling Barrier
    (Weinheim : Wiley-VCH, 2021) Chae, Soosang; Choi, Won Jin; Fotev, Ivan; Bittrich, Eva; Uhlmann, Petra; Schubert, Mathias; Makarov, Denys; Wagner, Jens; Pashkin, Alexej; Fery, Andreas
    Mechanical-strain-gated switches are cornerstone components of material-embedded circuits that perform logic operations without using conventional electronics. This technology requires a single material system to exhibit three distinct functionalities: strain-invariant conductivity and an increase or decrease of conductivity upon mechanical deformation. Herein, mechanical-strain-gated electric switches based on a thin-film architecture that features an insulator-to-conductor transition when mechanically stretched are demonstrated. The conductivity changes by nine orders of magnitude over a wide range of tunable working strains (as high as 130%). The approach relies on a nanometer-scale sandwiched bilayer Au thin film with an ultrathin poly(dimethylsiloxane) elastomeric barrier layer; applied strain alters the electron tunneling currents through the barrier. Mechanical-force-controlled electric logic circuits are achieved by realizing strain-controlled basic (AND and OR) and universal (NAND and NOR) logic gates in a single system. The proposed material system can be used to fabricate material-embedded logics of arbitrary complexity for a wide range of applications including soft robotics, wearable/implantable electronics, human-machine interfaces, and Internet of Things.