Search Results

Now showing 1 - 6 of 6
  • Item
    Stabilizing a three-center single-electron metal–metal bond in a fullerene cage
    (Cambridge : RSC, 2021) Jin, Fei; Xin, Jinpeng; Guan, Runnan; Xie, Xiao-Ming; Chen, Muqing; Zhang, Qianyan; Popov, Alexey A.; Xie, Su-Yuan; Yang, Shangfeng
    Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@Ih(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy–Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2−@C806− and features an unprecedented three-center single-electron Dy–Dy–Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@Ih(7)-C80 with a (Sc3)9+(C2)3−@C806− charge distribution and no metal–metal bonding.
  • Item
    Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds
    (Cambridge : RSC Publ., 2020) Fernandez, L.; Blanco-Rey, M.; Castrillo-Bodero, R.; Ilyn, M.; Ali, K.; Turco, E.; Corso, M.; Ormaza, M.; Gargiani, P.; Valbuena, M.A.; Mugarza, A.; Moras, P.; Sheverdyaeva, P.M.; Kundu, Asish K.; Jugovac, M.; Laubschat, C.; Ortega, J.E.; Schiller, F.
    One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer. © The Royal Society of Chemistry.
  • Item
    Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics
    (Cambridge : RSC Publ., 2021) Zhu, Taishan; He, Ran; Gong, Sheng; Xie, Tian; Gorai, Prashun; Nielsch, Kornelius; Grossman, Jeffrey C.
    Thermoelectric power generation represents a promising approach to utilize waste heat. The most effective thermoelectric materials exhibit low thermal conductivity κ. However, less than 5% out of about 105 synthesized inorganic materials are documented with their κ values, while for the remaining 95% κ values are missing and challenging to predict. In this work, by combining graph neural networks and random forest approaches, we predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database, and chart the structural chemistry of κ into extended van-Arkel triangles. Together with the newly developed κ map and our theoretical tool, we identify rare-earth chalcogenides as promising candidates, of which we measured ZT exceeding 1.0. We note that the κ chart can be further explored, and our computational and analytical tools are applicable generally for materials informatics.
  • Item
    Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6
    (London : Springer Nature, 2022) Siegfried, Peter E.; Bhandari, Hari; Jones, David C.; Ghimire, Madhav P.; Dally, Rebecca L.; Poudel, Lekh; Bleuel, Markus; Lynn, Jeffrey W.; Mazin, Igor I.; Ghimire, Nirmal J.
    The Fermi surface (FS) is essential for understanding the properties of metals. It can change under both conventional symmetry-breaking phase transitions and Lifshitz transitions (LTs), where the FS, but not the crystal symmetry, changes abruptly. Magnetic phase transitions involving uniformly rotating spin textures are conventional in nature, requiring strong spin-orbit coupling (SOC) to influence the FS topology and generate measurable properties. LTs driven by a continuously varying magnetization are rarely discussed. Here we present two such manifestations in the magnetotransport of the kagome magnet YMn6Sn6: one caused by changes in the magnetic structure and another by a magnetization-driven LT. The former yields a 10% magnetoresistance enhancement without a strong SOC, while the latter a 45% reduction in the resistivity. These phenomena offer a unique view into the interplay of magnetism and electronic topology, and for understanding the rare-earth counterparts, such as TbMn6Sn6, recently shown to harbor correlated topological physics.
  • Item
    Quantum chemical insights into hexaboride electronic structures: correlations within the boron p-orbital subsystem
    (London : Springer Nature, 2022) Petersen, Thorben; Rößler, Ulrich K.; Hozoi, Liviu
    The notion of strong electronic correlations arose in the context of d-metal oxides such as NiO but can be exemplified on systems as simple as the H2 molecule. Here we shed light on correlation effects on B62− clusters as found in MB6 hexaborides and show that the B 2p valence electrons are fairly correlated. B6-octahedron excitation energies computed for CaB6 and YbB6 agree with peak positions found by resonant inelastic x-ray scattering, providing a compelling picture for the latter. Our findings characterize these materials as very peculiar p-electron correlated systems and call for more involved many-body investigations within the whole hexaboride family, both alkaline- and rare-earth compounds, not only for N- but also (N ± 1)-states defining e. g. band gaps.
  • Item
    Evidence of the Anomalous Fluctuating Magnetic State by Pressure-Driven 4f Valence Change in EuNiGe3
    (Washington, DC : ACS, 2023) Chen, K.; Luo, C.; Zhao, Y.; Baudelet, F.; Maurya, A.; Thamizhavel, A.; Rößler, U. K.; Makarov, D.; Radu, F.
    In rare-earth compounds with valence fluctuation, the proximity of the 4f level to the Fermi energy leads to instabilities of the charge configuration and the magnetic moment. Here, we provide direct experimental evidence for an induced magnetic polarization of the Eu3+ atomic shell with J = 0, due to intra-atomic exchange and spin-orbital coupling interactions with the Eu2+ atomic shell. By applying external pressure, a transition from antiferromagnetic to a fluctuating behavior in EuNiGe3 single crystals is probed. Magnetic polarization is observed for both valence states of Eu2+ and Eu3+ across the entire pressure range. The anomalous magnetism is discussed in terms of a homogeneous intermediate valence state where frustrated Dzyaloshinskii-Moriya couplings are enhanced by the onset of spin-orbital interaction and engender a chiral spin-liquid-like precursor.