Search Results

Now showing 1 - 3 of 3
  • Item
    Bed flow photoreactor experiments to assess the photocatalytic nitrogen oxides abatement under simulated atmospheric conditions
    (Amsterdam : Elsevier, 2018) Mothes, F.; Ifang, S.; Gallus, M.; Golly, B.; Boréave, A.; Kurtenbach, R.; Kleffmann, J.; George, C.; Herrmann, H.
    Small scale bed flow photoreactor experiments were performed to assess the photocatalytic performance of cement-based TiO2-containing materials for NOx reduction through the determination of kinetic parameters under variation of the experimental conditions (relative humidity, flow rate, mixing ratio and light intensity) and monitoring of potential reaction products in the gas phase and the aqueous extract of the surface. The results clearly demonstrated the general potential of the tested material to photocatalytically remediate gas phase NOx by conversion into nitrite and nitrate as identified reaction products at the surface. The measured uptake coefficients for NO and NO2 under atmospheric relevant conditions were in the range of 5 × 10−5 with a corresponding surface deposition velocity of about 0.5 cm s−1. However, it became also clear that the photocatalytic activity is in part significantly dependent on the experimental conditions. The relative humidity and the mixing ratio of the air pollutant were identified as the most important parameters. In addition, under certain conditions, a renoxification process can occur. The comprehensive results of the present study are discussed in detail to develop recommendations for a possible future application of this technique to improve urban air quality.
  • Item
    A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe
    (Amsterdam : Elsevier, 2021) Bressi, M.; Cavalli, F.; Putaud, J.P.; Fröhlich, R.; Petit, J.-E.; Aas, W.; Äijälä, M.; Alastuey, A.; Allan, J.D.; Aurela, M.; Berico, M.; Bougiatioti, A.; Bukowiecki, N.; Canonaco, F.; Crenn, V.; Dusanter, S.; Ehn, M.; Elsasser, M.; Flentje, H.; Graf, P.; Green, D.C.; Heikkinen, L.; Hermann, H.; Holzinger, R.; Hueglin, C.; Keernik, H.; Kiendler-Scharr, A.; Kubelová, L.; Lunder, C.; Maasikmets, M.; Makeš, O.; Malaguti, A.; Mihalopoulos, N.; Nicolas, J.B.; O'Dowd, C.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Schlag, P.; Schwarz, J.; Sciare, J.; Slowik, J.; Sosedova, Y.; Stavroulas, I.; Teinemaa, E.; Via, M.; Vodička, P.; Williams, P.I.; Wiedensohler, A.; Young, D.E.; Zhang, S.; Favez, O.; Minguillón, M.C.; Prevot, A.S.H.
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/m³) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m³ at half of the sites. © 2021 The Authors
  • Item
    EURODELTA III exercise: An evaluation of air quality models’ capacity to reproduce the carbonaceous aerosol
    (Amsterdam : Elsevier, 2019) Mircea, Mihaela; Bessagnet, Bertrand; D'Isidoro, Massimo; Pirovano, Guido; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Tsyro, Svetlana; Manders, Astrid; Bieser, Johannes; Stern, Rainer; Vivanco, Marta García; Cuvelier, Cornelius; Aas, Wenche; Prévôt, André S.H.; Aulinger, Armin; Briganti, Gino; Calori, Giuseppe; Cappelletti, Andrea; Colette, Augustin; Couvidat, Florian; Fagerli, Hilde; Finardi, Sandro; Kranenburg, Richard; Rouïl, Laurence; Silibello, Camillo; Spindler, Gerald; Poulain, Laurent; Herrmann, Hartmut; Jimenez, Jose L.; Day, Douglas A.; Tiitta, Petri; Carbone, Samara
    The carbonaceous aerosol accounts for an important part of total aerosol mass, affects human health and climate through its effects on physical and chemical properties of the aerosol, yet the understanding of its atmospheric sources and sinks is still incomplete. This study shows the state-of-the-art in modelling carbonaceous aerosol over Europe by comparing simulations performed with seven chemical transport models (CTMs) currently in air quality assessments in Europe: CAMx, CHIMERE, CMAQ, EMEP/MSC-W, LOTOS-EUROS, MINNI and RCGC. The simulations were carried out in the framework of the EURODELTA III modelling exercise and were evaluated against field measurements from intensive campaigns of European Monitoring and Evaluation Programme (EMEP) and the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Model simulations were performed over the same domain, using as much as possible the same input data and covering four seasons: summer (1–30 June 2006), winter (8 January – 4 February 2007), autumn (17 September- 15 October 2008) and spring (25 February - 26 March 2009). The analyses of models’ performances in prediction of elemental carbon (EC) for the four seasons and organic aerosol components (OA) for the last two seasons show that all models generally underestimate the measured concentrations. The maximum underestimation of EC is about 60% and up to about 80% for total organic matter (TOM). The underestimation of TOM outside of highly polluted area is a consequence of an underestimation of secondary organic aerosol (SOA), in particular of its main contributor: biogenic secondary aerosol (BSOA). This result is independent on the SOA modelling approach used and season. The concentrations and daily cycles of total primary organic matter (TPOM) are generally better reproduced by the models since they used the same anthropogenic emissions. However, the combination of emissions and model formulation leads to overestimate TPOM concentrations in 2009 for most of the models. All models capture relatively well the SOA daily cycles at rural stations mainly due to the spatial resolution used in the simulations. For the investigated carbonaceous aerosol compounds, the differences between the concentrations simulated by different models are lower than the differences between the concentrations simulated with a model for different seasons. © 2019 The Authors