Search Results

Now showing 1 - 4 of 4
  • Item
    The strategic dimension of financing global public goods
    (Amsterdam : Elsevier, 2020) Kornek, Ulrike; Edenhofer, Ottmar
    One challenge in addressing transboundary problems such as climate change is the incentive to free-ride. Transfers from multilateral compensation funds are often used to counteract such incentives, albeit with varying success. We examine how such funds can change the incentive to free-ride in a global public-goods game. In our game, self-interested countries choose their own preferred course, deciding their voluntary public good provision, whether to join a fund that offers compensation for providing the public good and the volume of compensatory payments. We show that (i) total public-good provision is higher when those contributing are given more compensation; and (ii) non-participation in the fund can be punished if the remaining members decrease their public-good provision sufficiently. We then examine three specific fund designs. In the first, the compensation paid to each country is equal to the percentage of above-average total costs for public-goods provision. This design is best able to deter free-riding and can establish the social optimum as the equilibrium. In the second, the compensation paid to each country is a function of the marginal cost of their public-good provision. Here there are significant incentives to free-ride. In the third case, the monetary resources provided by the fund are fixed, a design frequently encountered in international funds. This design is the one least able to deter free-riding. © 2020 The Author(s)
  • Item
    Simulation of flood hazard and risk in the Danube basin with the Future Danube Model
    (Amsterdam : Elsevier, 2018) Hattermann, Fred F.; Wortmann, Michel; Liersch, Stefan; Toumi, Ralf; Sparks, Nathan; Genillard, Christopher; Schröter, Kai; Steinhausen, Max; Gyalai-Korpos, Miklós; Máté, Kinga; Hayes, Ben; del Rocío Rivas López, María; Rácz, Tibor; Nielsen, Marie R.; Kaspersen, Per S.; Drews, Martin
    Major river and flash flood events have accumulated in Central and Eastern Europe over the last decade reminding the public as well as the insurance sector that climate related risks are likely to become even more damaging and prevalent as climate patterns change. However, information about current and future hydro-climatic extremes is often not available. The Future Danube Model (FDM) is an end-user driven multi-hazard and risk model suite for the Danube region that has been developed to provide climate services related to perils such as heavy precipitation, heat waves, floods, and droughts under recent and scenario conditions. As a result, it provides spatially consistent information on extreme events and natural resources throughout the entire Danube catchment. It can be used to quantify climate risks, to support the implementation of the EU framework directives, for climate informed urban and land use planning, water resources management, and for climate proofing of large scale infrastructural planning including cost benefit analysis. The model suite consists of five individual and exchangeable modules: a weather and climate module, a hydrological module, a risk module, an adaptation module, and a web-based visualization module. They are linked in such a way that output from one module can either be used standalone or fed into subsequent modules. The utility of the tool has been tested by experts and stakeholders. The results show that more and more intense hydrological extremes are likely to occur under climate scenario conditions, e.g. higher order floods may occur more frequently.
  • Item
    Low-stabilisation scenarios and technologies for carbon capture and sequestration
    (Amsterdam : Elsevier, 2009) Bauer, N.; Edenhofer, O.; Leimbach, M.
    Endogenous technology scenarios for meeting low stabilization CO2 targets are derived in this study and assessed regarding emission reductions and mitigation costs. The aim is to indentify the most important technology options for achieving low stabilization targets. The significance of an option is indicated by its achieved emission reduction and the mitigation cost increase, if this option were not available. Quantitative results are computed using a global multi-regional hard-linked hybrid model that integrates the economy, the energy sector and the climate system. The model endogenously determines the optimal deployment of technologies subject to a constraint on climate change. The alternative options in the energy sector comprise the most important mitigation technologies: renewables, biomass, nuclear, carbon capture and sequestration (CCS), and biomass with CCS as well as energy efficiency improvements. The results indicate that the availability of CCS technologies and espec. biomass with CCS is highly desirable for achieving low stabilization goals at low costs. The option of nuclear energy is different: although it could play an important role in the primary energy mix, mitigation costs would only mildly increase, if it could not be expanded. Therefore, in order to promote prudent climate change mitigation goals, support of CCS technologies reduces the costs and-thus-is desirable from a social point of view. © 2009 Elsevier Ltd. All rights reserved.
  • Item
    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
    (Amsterdam : Elsevier, 2016) Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang; Popp, Alexander; Crespo Cuaresma, Jesus; KC, Samir; Leimbach, Marian; Jiang, Leiwen; Kram, Tom; Rao, Shilpa; Emmerling, Johannes; Ebi, Kristie; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Aleluia Da Silva, Lara; Smith, Steve; Stehfest, Elke; Bosetti, Valentina; Eom, Jiyong; Gernaat, David; Masui, Toshihiko; Rogelj, Joeri; Strefler, Jessica; Drouet, Laurent; Krey, Volker; Luderer, Gunnar; Harmsen, Mathijs; Takahashi, Kiyoshi; Baumstark, Lavinia; Doelman, Jonathan C.; Kainuma, Mikiko; Klimont, Zbigniew; Marangoni, Giacomo; Lotze-Campen, Hermann; Obersteiner, Michael; Tabeau, Andrzej; Tavoni, Massimo
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).