Search Results

Now showing 1 - 10 of 11
  • Item
    Characterization of organic aerosol across the global remote troposphere: A comparison of ATom measurements and global chemistry models
    (Katlenburg-Lindau : EGU, 2020) Hodzic, Alma; Campuzano-Jost, Pedro; Bian, Huisheng; Chin, Mian; Colarco, Peter R.; Day, Douglas A.; Froyd, Karl D.; Heinold, Bernd; Katich, Joseph M.; Jo, Duseong S.; Kodros, John K.; Nault, Benjamin A.; Pierce, Jeffrey R.; Ray, Eric; Schacht, Jacob; Schill, Gregory P.; Schroder, Jason C.; Schwarz, Joshua P.; Sueper, Donna T.; Tegen, Ina; Tilmes, Simone; Tsigaridis, Kostas; Yu, Pengfei; Jimenez, Jose L.
    The spatial distribution and properties of submicron organic aerosol (OA) are among the key sources of uncertainty in our understanding of aerosol effects on climate. Uncertainties are particularly large over remote regions of the free troposphere and Southern Ocean, where very few data have been available and where OA predictions from AeroCom Phase II global models span 2 to 3 orders of magnitude, greatly exceeding the model spread over source regions. The (nearly) pole-to-pole vertical distribution of nonrefractory aerosols was measured with an aerosol mass spectrometer onboard the NASA DC-8 aircraft as part of the Atmospheric Tomography (ATom) mission during the Northern Hemisphere summer (August 2016) and winter (February 2017). This study presents the first extensive characterization of OA mass concentrations and their level of oxidation in the remote atmosphere. OA and sulfate are the major contributors by mass to submicron aerosols in the remote troposphere, together with sea salt in the marine boundary layer. Sulfate was dominant in the lower stratosphere. OA concentrations have a strong seasonal and zonal variability, with the highest levels measured in the lower troposphere in the summer and over the regions influenced by biomass burning from Africa (up to 10 μgsm-3). Lower concentrations (~ 0:1 0.3 μgsm-3) are observed in the northern middle and high latitudes and very low concentrations (< 0:1 μgsm-3) in the southern middle and high latitudes. The ATom dataset is used to evaluate predictions of eight current global chemistry models that implement a variety of commonly used representations of OA sources and chemistry, as well as of the AeroCom-II ensemble. The current model ensemble captures the average vertical and spatial distribution of measured OA concentrations, and the spread of the individual models remains within a factor of 5. These results are significantly improved over the AeroCom-II model ensemble, which shows large overestimations over these regions. However, some of the improved agreement with observations occurs for the wrong reasons, as models have the tendency to greatly overestimate the primary OA fraction and underestimate the sec-ondary fraction. Measured OA in the remote free troposphere is highly oxygenated, with organic aerosol to organic carbon (OA= OC) ratios of ~ 2.2 2.8, and is 30 % 60% more oxygenated than in current models, which can lead to significant errors in OA concentrations. The model measurement comparisons presented here support the concept of a more dynamic OA system as proposed by Hodzic et al. (2016), with enhanced removal of primary OA and a stronger production of secondary OA in global models needed to provide better agreement with observations. © 2020 IEEE Computer Society. All rights reserved.
  • Item
    Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models
    (Katlenburg-Lindau : EGU, 2017) BarĂ³, RocĂ­o; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; PĂ©rez, Juan Luis; Pirovano, Guido; San JosĂ©, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; JimĂ©nez-Guerrero, Pedro
    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.
  • Item
    Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry
    (Katlenburg-Lindau : Copernicus, 2016) Daellenbach, K.R.; Bozzetti, C.; KÅ™epelovĂ¡, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J.G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; PrĂ©vĂ´t, A.S.H.
    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60–91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.
  • Item
    Influence of aerosol copper on HO2 uptake: A novel parameterized equation
    (Katlenburg-Lindau : EGU, 2020) Song, Huan; Chen, Xiaorui; Lu, Keding; Zou, Qi; Tan, Zhaofeng; Fuchs, Hendrik; Wiedensohler, Alfred; Moon, Daniel R.; Heard, Dwayne E.; Baeza-Romero, MarĂ­a-Teresa; Zheng, Mei; Wahner, Andreas; Kiendler-Scharr, Astrid; Zhang, Yuanhang
    Heterogeneous uptake of hydroperoxyl radicals (HO2) onto aerosols has been proposed to be a significant sink of HOx , hence impacting the atmospheric oxidation capacity. Accurate calculation of the HO2 uptake coefficient HO2 is key to quantifying the potential impact of this atmospheric process. Laboratory studies show that HO2 can vary by orders of magnitude due to changes in aerosol properties, especially aerosol soluble copper (Cu) concentration and aerosol liquid water content (ALWC). In this study we present a state-of-the-art model called MARK to simulate both gas- and aerosol-phase chemistry for the uptake of HO2 onto Cu-doped aerosols. Moreover, a novel parameterization of HO2 uptake was developed that considers changes in relative humidity (RH) and condensed-phase Cu ion concentrations and which is based on a model optimization using previously published and new laboratory data included in this work. This new parameterization will be applicable to wet aerosols, and it will complement current IUPAC recommendations. The new parameterization is as follows (the explanations for symbols are in the Appendix): (Formula presented) All parameters used in the paper are summarized in Table A1. Using this new equation, field data from a field campaign were used to evaluate the impact of the HO2 uptake onto aerosols on the ROx (=OH+HO2 CRO2) budget. Highly variable values for HO2 uptake were obtained for the North China Plain (median value <0.1). © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Atmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters
    (Katlenburg-Lindau : EGU, 2018) GrĂ¶ĂŸ, Johannes; Hamed, Amar; Sonntag, AndrĂ©; Spindler, Gerald; Manninen, Hanna Elina; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-DĂ¼lmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram
    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.
  • Item
    An EARLINET early warning system for atmospheric aerosol aviation hazards
    (Katlenburg-Lindau : EGU, 2020) Papagiannopoulos, Nikolaos; D’Amico, Giuseppe; Gialitaki, Anna; Ajtai, Nicolae; Alados-Arboledas, Lucas; Amodeo, Aldo; Amiridis, Vassilis; Baars, Holger; Balis, Dimitris; Binietoglou, Ioannis; ComerĂ³n, Adolfo; Dionisi, Davide; Falconieri, Alfredo; FrĂ©ville, Patrick; Kampouri, Anna; Mattis, Ina; Mijić, Zoran; Molero, Francisco; Papayannis, Alex; Pappalardo, Gelsomina; RodrĂ­guez-GĂ³mez, Alejandro; Solomos, Stavros; Mona, Lucia
    A stand-alone lidar-based method for detecting airborne hazards for aviation in near real time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Research Lidar Network (EARLINET) delivers high-resolution preprocessed data: the calibrated total attenuated backscatter and the calibrated volume linear depolarization ratio time series. From these calibrated lidar signals, the particle backscatter coefficient and the particle depolarization ratio can be derived in temporally high resolution and thus provide the basis of the NRT early warning system (EWS). In particular, an iterative method for the retrieval of the particle backscatter is implemented. This improved capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied to data during two diverse aerosol scenarios: first, a record breaking desert dust intrusion in March 2018 over Finokalia, Greece, and, second, an intrusion of volcanic particles originating from Mount Etna, Italy, in June 2019 over Antikythera, Greece. Additionally, a devoted observational period including several EARLINET lidar systems demonstrates the network's preparedness to offer insight into natural hazards that affect the aviation sector. © 2020 Author(s).
  • Item
    Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain
    (Göttingen : Copernicus, 2014) Chen, J.; Zhao, C.S.; Ma, N.; Yan, P.
    The relative humidity (RH) dependence of aerosol light scattering is an essential parameter for accurate estimation of the direct radiative forcing induced by aerosol particles. Because of insufficient information on aerosol hygroscopicity in climate models, a more detailed parameterization of hygroscopic growth factors and resulting optical properties with respect to location, time, sources, aerosol chemistry and meteorology are urgently required. In this paper, a retrieval method to calculate the aerosol hygroscopicity parameter, κ, is proposed based on the in situ measured aerosol light scattering enhancement factor, namely f(RH), and particle number size distribution (PNSD) obtained from the HaChi (Haze in China) campaign. Measurements show that f(RH) increases sharply with increasing RH, and that the time variance of f(RH) is much greater at higher RH. A sensitivity analysis reveals that the f(RH) is more sensitive to the aerosol hygroscopicity than PNSD. f(RH) for polluted cases is distinctly higher than that for clean periods at a specific RH. The derived equivalent κ, combined with the PNSD measurements, is applied in the prediction of the cloud condensation nuclei (CCN) number concentration. The predicted CCN number concentration with the derived equivalent κ agrees well with the measured ones, especially at high supersaturations. The proposed calculation algorithm of κ with the f(RH) measurements is demonstrated to be reasonable and can be widely applied.
  • Item
    Role of the dew water on the ground surface in HONO distribution: A case measurement in Melpitz
    (Katlenburg-Lindau : EGU, 2020) Ren, Yangang; Stieger, Bastian; Spindler, Gerald; Grosselin, Benoit; Mellouki, Abdelwahid; Tuch, Thomas; Wiedensohler, Alfred; Herrmann, Hartmut
    To characterize the role of dew water for the ground surface HONO distribution, nitrous acid (HONO) measurements with a Monitor for AeRosols and Gases in ambient Air (MARGA) and a LOng Path Absorption Photometer (LOPAP) instrument were performed at the Leibniz Institute for Tropospheric Research (TROPOS) research site in Melpitz, Germany, from 19 to 29 April 2018. The dew water was also collected and analyzed from 8 to 14 May 2019 using a glass sampler. The high time resolution of HONO measurements showed characteristic diurnal variations that revealed that (i) vehicle emissions are a minor source of HONO at Melpitz station; (ii) the heterogeneous conversion of NO2 to HONO on the ground surface dominates HONO production at night; (iii) there is significant nighttime loss of HONO with a sink strength of 0.16±0.12ppbv h-1; and (iv) dew water with mean NO-2 of 7.91±2.14 μgm-2 could serve as a temporary HONO source in the morning when the dew droplets evaporate. The nocturnal observations of HONO and NO2 allowed the direct evaluation of the ground uptake coefficients for these species at night: γNO2→HONO = 2.4±10-7 to 3.5±10-6, γHONO;ground = 1.7Ă—10-5 to 2.8Ă—10-4. A chemical model demonstrated that HONO deposition to the ground surface at night was 90 %-100% of the calculated unknown HONO source in the morning. These results suggest that dew water on the ground surface was controlling the temporal HONO distribution rather than straightforward NO2-HONO conversion. This can strongly enhance the OH reactivity throughout the morning time or in other planted areas that provide a large amount of ground surface based on the OH production rate calculation. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    An automatic observation-based aerosol typing method for EARLINET
    (Katlenburg-Lindau : EGU, 2018) Papagiannopoulos, Nikolaos; Mona, Lucia; Amodeo, Aldo; D'Amico, Giuseppe; GumĂ  Claramunt, Pilar; Pappalardo, Gelsomina; Alados-Arboledas, Lucas; Guerrero-Rascado, Juan LuĂ­s; Amiridis, Vassilis; Kokkalis, Panagiotis; Apituley, Arnoud; Baars, Holger; Schwarz, Anja; Wandinger, Ulla; Binietoglou, Ioannis; Nicolae, Doina; Bortoli, Daniele; ComerĂ³n, Adolfo; RodrĂ­guez-GĂ³mez, Alejandro; Sicard, MichaĂ«l; Papayannis, Alex; Wiegner, Matthias
    We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80%. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.
  • Item
    Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations
    (Katlenburg-Lindau : Copernicus, 2020) Witthuhn, Jonas; HĂ¼nerbein, Anja; Deneke, Hartwig
    Reliable reference measurements over the ocean are essential for the evaluation and improvement of satelliteand model-based aerosol datasets. Within the framework of the Maritime Aerosol Network, shipborne reference datasets have been collected over the Atlantic Ocean since 2004 with Microtops Sun photometers. These were recently complemented by measurements with the multi-spectral GUVis- 3511 shadowband radiometer during five cruises with the research vessel Polarstern. The aerosol optical depth (AOD) uncertainty estimate of both shipborne instruments of ±0:02 can be confirmed if the GUVis instrument is cross calibrated to the Microtops instrument to account for differences in calibration, and if an empirical correction to account for the broad shadowband as well as the effects of forward scattering is introduced. Based on these two datasets, a comprehensive evaluation of aerosol products from the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on NASA's Earth Observing System satellites, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat satellite, and the Copernicus Atmosphere Monitoring Service reanalysis (CAMS RA) is presented. For this purpose, focus is given to the accuracy of the AOD at 630 nm in combination with the Ångström exponent (AE), discussed in the context of the ambient aerosol type. In general, the evaluation of MODIS AOD from the official level-2 aerosol products of C6.1 against the Microtops AOD product confirms that 76% of data points fall into the expected error limits given by previous validation studies. The SEVIRI-based AOD product exhibits a 25% larger scatter than the MODIS AOD products at the instrument's native spectral channels. Further, the comparison of CAMS RA and MODIS AOD versus the shipborne reference shows similar performance for both datasets, with some differences arising from the assimilation and model assumptions. When considering aerosol conditions, an overestimation of AE is found for scenes dominated by desert dust for MODIS and SEVIRI products versus the shipborne reference dataset. As the composition of the mixture of aerosol in satellite products is constrained by model assumptions, this highlights the importance of considering the aerosol type in evaluation studies for identifying problematic aspects. © Author(s) 2020.