Search Results

Now showing 1 - 10 of 26
  • Item
    Multiscale thermodynamics of charged mixtures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Vágner, Petr; Pavelka, Michal; Esen, Oğul
    A multiscale theory of interacting continuum mechanics and thermodynamics of mixtures of fluids, electrodynamics, polarization and magnetization is proposed. The mechanical (reversible) part of the theory is constructed in a purely geometric way by means of semidirect products. This leads to a complex Hamiltonian system with a new Poisson bracket, which can be used in principle with any energy functional. The thermodynamic (irreversible) part is added as gradient dynamics, generated by derivatives of a dissipation potential, which makes the theory part of the GENERIC framework. Subsequently, Dynamic MaxEnt reductions are carried out, which lead to reduced GENERIC models for smaller sets of state variables. Eventually, standard engineering models are recovered as the low-level limits of the detailed theory. The theory is then compared to recent literature.
  • Item
    Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3
    (London : Nature Publishing Group, 2019) Zhang, Y.; Holder, T.; Ishizuka, H.; de Juan, F.; Nagaosa, N.; Felser, C.; Yan, B.
    The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI3, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.
  • Item
    Probing multiphoton light-induced molecular potentials
    ([London] : Nature Publishing Group UK, 2020) Kübel, M.; Spanner, M.; Dube, Z.; Naumov, A.Yu.; Chelkowski, S.; Bandrauk, A.D.; Vrakking, M.J.J.; Corkum, P.B.; Villeneuve, D.M.; Staudte, A.
    The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules.
  • Item
    Beam combining scheme for high-power broad-area semiconductor lasers with Lyot-filtered reinjection: Modeling, simulations, and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Brée, Carsten; Raab, Volker; Montiel-Ponsoda, Joan; Garre-Werner, Guillermo; Staliunas, Kestutis; Bandelow, Uwe; Radziunas, Mindaugas
    A brightness- and power-scalable polarization beam combining scheme for high-power, broadarea semiconductor laser diodes is investigated numerically and experimentally. To achieve the beam combining, we employ Lyot-filtered optical reinjection from an external cavity, which forces lasing of the individual diodes on interleaved frequency combs with overlapping envelopes and enables a high optical coupling efficiency. Unlike conventional spectral beam combining schemes with diffraction gratings, the optical coupling efficiency is insensitive to thermal drifts of laser wavelengths. This scheme can be used for efficient coupling of a large number of laser diodes and paves the way towards using broad-area laser diode arrays for cost-efficient material processing, which requires high-brilliance emission and optical powers in the kW-regime.
  • Item
    Role of hole confinement in the recombination properties of InGaN quantum structures
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Anikeeva, M.; Albrecht, M.; Mahler, F.; Tomm, J. W.; Lymperakis, L.; Chèze, C.; Calarco, R.; Neugebauer, J.; Schulz, T.
    We study the isolated contribution of hole localization for well-known charge carrier recombination properties observed in conventional, polar InGaN quantum wells (QWs). This involves the interplay of charge carrier localization and non-radiative transitions, a non-exponential decay of the emission and a specific temperature dependence of the emission, denoted as “s-shape”. We investigate two dimensional In0.25Ga0.75N QWs of single monolayer (ML) thickness, stacked in a superlattice with GaN barriers of 6, 12, 25 and 50 MLs. Our results are based on scanning and high-resolution transmission electron microscopy (STEM and HR-TEM), continuous-wave (CW) and time-resolved photoluminescence (TRPL) measurements as well as density functional theory (DFT) calculations. We show that the recombination processes in our structures are not affected by polarization fields and electron localization. Nevertheless, we observe all the aforementioned recombination properties typically found in standard polar InGaN quantum wells. Via decreasing the GaN barrier width to 6 MLs and below, the localization of holes in our QWs is strongly reduced. This enhances the influence of non-radiative recombination, resulting in a decreased lifetime of the emission, a weaker spectral dependence of the decay time and a reduced s-shape of the emission peak. These findings suggest that single exponential decay observed in non-polar QWs might be related to an increasing influence of non-radiative transitions.
  • Item
    Gate controlled valley polarizer in bilayer graphene
    ([London] : Nature Publishing Group UK, 2020) Chen, Hao; Zhou, Pinjia; Liu, Jiawei; Qiao, Jiabin; Oezyilmaz, Barbaros; Martin, Jens
    Sign reversal of Berry curvature across two oppositely gated regions in bilayer graphene can give rise to counter-propagating 1D channels with opposite valley indices. Considering spin and sub-lattice degeneracy, there are four quantized conduction channels in each direction. Previous experimental work on gate-controlled valley polarizer achieved good contrast only in the presence of an external magnetic field. Yet, with increasing magnetic field the ungated regions of bilayer graphene will transit into the quantum Hall regime, limiting the applications of valley-polarized electrons. Here we present improved performance of a gate-controlled valley polarizer through optimized device geometry and stacking method. Electrical measurements show up to two orders of magnitude difference in conductance between the valley-polarized state and gapped states. The valley-polarized state displays conductance of nearly 4e2/h and produces contrast in a subsequent valley analyzer configuration. These results pave the way to further experiments on valley-polarized electrons in zero magnetic field.
  • Item
    Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions
    (London : Nature Publishing Group, 2017) Keil, R.; Zopf, M.; Chen, Y.; Höfer, B.; Zhang, J.; Ding, F.; Schmidt, O.G.
    Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization-entangled photon pairs. Despite remarkable progress in the past 20 years, many challenges still remain for this material, such as the extremely low yield, the low degree of entanglement and the large wavelength distribution. Here, we show that with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement and ultra-narrow wavelength distribution at rubidium transitions. Therefore, this material system is an attractive candidate for the realization of a solid-state quantum repeater - among many other key enabling quantum photonic elements.
  • Item
    Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics
    (London : Nature Publishing Group, 2018) Yuan, X.; Weyhausen-Brinkmann, F.; Martín-Sánchez, J.; Piredda, G.; Křápek, V.; Huo, Y.; Huang, H.; Schimpf, C.; Schmidt, O.G.; Edlinger, J.; Bester, G.; Trotta, R.; Rastelli, A.
    The optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in-plane uniaxial stress. By using piezoelectric strain-actuators featuring strain amplification, we study the evolution of the selection rules and excitonic fine structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry-properties of the system. The experimental and computational results suggest that uniaxial stress may be the right tool to obtain quantum-light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.
  • Item
    Interface polarization model for a 2-dimensional electron gas at the BaSnO3/LaInO3 interface
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Kim, Young Mo; Markurt, T.; Kim, Youjung; Zupancic, M.; Shin, Juyeon; Albrecht, M.; Char, Kookrin
    In order to explain the experimental sheet carrier density n2D at the interface of BaSnO3/LaInO3, we consider a model that is based on the presence of interface polarization in LaInO3 which extends over 2 pseudocubic unit cells from the interface and eventually disappears in the next 2 unit cells. Considering such interface polarization in calculations based on 1D Poisson-Schrödinger equations, we consistently explain the dependence of the sheet carrier density of BaSnO3/LaInO3 heterinterfaces on the thickness of the LaInO3 layer and the La doping of the BaSnO3 layer. Our model is supported by a quantitative analysis of atomic position obtained from high resolution transmission electron microscopy which evidences suppression of the octahedral tilt and a vertical lattice expansion in LaInO3 over 2–3 pseudocubic unit cells at the coherently strained interface.
  • Item
    Attosecond recorder of the polarization state of light
    ([London] : Nature Publishing Group UK, 2018) Jiménez-Galán, Álvaro; Dixit, Gopal; Patchkovskii, Serguei; Smirnova, Olga; Morales, Felipe; Ivanov, Misha
    High harmonic generation in multi-color laser fields opens the opportunity of generating isolated attosecond pulses with high ellipticity. Such pulses hold the potential for time-resolving chiral electronic, magnetization, and spin dynamics at their natural timescale. However, this potential cannot be realized without characterizing the exact polarization state of light on the attosecond timescale. Here we propose and numerically demonstrate a complete solution of this problem. Our solution exploits the extrinsic two-dimensional chirality induced in an atom interacting with the chiral attosecond pulse and a linearly polarized infrared probe. The resulting asymmetry in the photoelectron spectra allows to reconstruct the complete polarization state of the attosecond pulse, including its possible time dependence. The challenging problem of distinguishing circularly polarized, partially polarized, or unpolarized pulses in the extreme ultraviolet range is also resolved. We expect this approach to become the core ingredient for attosecond measurements of chiral-sensitive processes in gas and condensed phase.