Search Results

Now showing 1 - 10 of 17
  • Item
    Revealing the co-action of viscous and multistability hysteresis in an adhesive, nominally flat punch: A combined numerical and experimental study
    ([Erscheinungsort nicht ermittelbar] : arXiv, 2022) Christian Müller, Manar Samri, René Hensel, Eduard Arzt, Martin H. Müser
    Viscoelasticity is well known to cause a significant hysteresis of crack closure and opening when an elastomer is brought in and out of contact with a flat, rigid counterface. In contrast, the idea that adhesive hysteresis can also result under quasi-static driving due to small-scale, elastic multistability is relatively new. Here, we study a system in which both mechanisms act concurrently. Specifically, we compare the simulated and experimentally measured time evolution of the interfacial force and the real contact area between a soft elastomer and a rigid, flat punch, to which small-scale, single-sinusoidal roughness is added. To this end, we further the Green's function molecular dynamics method and extend recently developed imaging techniques to elucidate the rate- and preload-dependence of the pull-off process. Our results reveal that hysteresis is much enhanced when the saddle points of the topography come into contact, which, however, is impeded by viscoelastic forces and may require sufficiently large preloads. A similar coaction of viscous- and multistability effects is expected to occur in macroscopic polymer contacts and be relevant, e.g., for pressure-sensitive adhesives and modern adhesive gripping devices.
  • Item
    Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo
    (Weinheim : Wiley-VCH, 2021) Pearson, Samuel; Feng, Jun; del Campo, Aránzazu
    Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
  • Item
    Electrocatalytic fuel cell desalination for continuous energy and freshwater generation
    (Maryland Heights, MO : Cell Press, 2021) Zhang, Yuan; Wang, Lei; Presser, Volker
    Advanced hydrogen technologies contribute essentially to the decarbonization of our industrialized world. Large-scale hydrogen production would benefit from using the abundantly available water reservoir of our planet’s oceans. Current seawater-desalination technologies suffer from high energy consumption, high cost, or low performance. Here, we report technology for water desalination at seawater molarity, based on a polymer ion-exchange membrane fuel cell. By continuously supplying hydrogen and oxygen to the cell, a 160-mM concentration decrease from an initial value of 600 mM is accomplished within 40 h for a 55-mL reservoir. This device’s desalination rate in 600 mM NaCl and substitute ocean water are 18 g/m2/h and 16 g/m2/h, respectively. In addition, by removing 1 g of NaCl, 67 mWh of electric energy is generated. This proof-of-concept work shows the high application potential for sustainable fuel-cell desalination (FCD) using hydrogen as an energy carrier.
  • Item
    Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity
    (Maryland Heights, MO : Cell Press, 2022) Zhang, Yuan; Prehal, Christian; Jiang, Huili; Liu, Yang; Feng, Guang; Presser, Volker
    Electrochemical seawater desalination has drawn significant attention as an energy-efficient technique to address the global issue of water remediation. Microporous carbons, that is, carbons with pore sizes smaller than 2 nm, are commonly used for capacitive deionization. However, micropores are ineffective for capacitive deionization at high molar strength because of their inability to permselectively uptake ions. In our work, we combine experimental work with molecular dynamics simulation and reveal the ability of sub-nanometer pores (ultramicropores) to effectively desalinate aqueous media at seawater-like molar strength. This is done without any ion-exchange membrane. The desalination capacity in 600 mM reaches 12 mg/g, with a charge efficiency of 94% and high cycling stability over 200 cycles (97% of charge efficiency retention). Using molecular dynamic simulations and providing experimental data, our work makes it possible both to understand and to calculate desalination capacity and charge efficiency at high molar strength as a function of pore size.
  • Item
    Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries
    (London [u.a.] : RSC, 2022) Arnold, Stefanie; Gentile, Antonio; Li, Yunjie; Wang, Qingsong; Marchionna, Stefano; Ruffo, Riccardo; Presser, Volker
    Due to their versatile properties and excellent electrical conductivity, MXenes have become attractive materials for alkali metal-ion batteries. However, as the capacity is limited to lower values due to the intercalation mechanism, these materials can hardly keep up in the ever-fast-growing community of battery research. Antimony has a promisingly high theoretical sodiation capacity characterized by an alloying reaction. The main drawback of this type of battery material is related to the high volume changes during cycling, often leading to electrode cracking and pulverization, resulting in poor electrochemical performance. A synergistic effect of combing antimony and MXene can be expected to obtain an optimized electrochemical system to overcome capacity fading of antimony while taking advantage of MXene charge storage ability. In this work, variation of the synthesis parameters and material design strategy have been dedicated to achieving the optimized antimony/MXene hybrid electrodes for high-performance sodium-ion batteries. The optimized performance does not align with the highest amount of antimony, the smallest nanoparticles, or the largest interlayer distance of MXene but with the most homogeneous distribution of antimony and MXene while both components remain electrochemically addressable. As a result, the electrode with 40 mass% MXene, not previously expanded, etched with 5 mass% HF and 60% antimony synthesized on the surfaces of MXene emerged as the best electrode. We obtained a high reversible capacity of 450 mA h g−1 at 0.1 A g−1 with a capacity retention of around 96% after 100 cycles with this hybrid material. Besides the successful cycling stability, this material also exhibits high rate capability with a capacity of 365 mA h g−1 at 4 A g−1. In situ XRD measurements and post mortem analysis were used to investigate the reaction mechanism.
  • Item
    Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries
    (London [u.a.] : RSC, 2020) Pfeifer, Kristina; Arnold, Stefanie; Budak, Öznil; Luo, Xianlin; Presser, Volker; Ehrenberg, Helmut; Dsoke, Sonia
    Electrodes based on alloying reactions for sodium-ion batteries (NIB) offer high specific capacity but require bespoken electrode material design to enable high performance stability. This work addresses that issue by systematically exploring the impact of carbon properties on antimony/carbon composite electrodes for NIBs. Since the Sb surface is covered by an insulating oxide layer, carbon additives are crucial for the percolation and electrochemical activity of Sb based anodes. Instead of using complex hybridization strategies, the ability of mechanical mixing to yield stable high-performance Sb/C sodium-ion battery (NIB) electrodes is shown. This is only possible by considering the physical, chemical, and structural features of the carbon phase. A comparison of carbon nanohorns, onion-like carbon, carbon black, and graphite as conductive additives is given in this work. The best performance is not triggered by the highest or lowest surface area, and not by highest or lowest heteroatom content, but by the best ability to homogenously distribute within the Sb matrix. The latter provides an optimum interaction between carbon and Sb and is best enabled by onion-like carbon. A remarkable rate performance is attained, electrode cracking caused by volume expansion is successfully prevented, and the homogeneity of the solid/electrolyte interphase is significantly improved as a result of it. With this composite electrode, a reversible capacity of 490 mA h g-1 at 0.1 A g-1 and even 300 mA g-1 at 8 A g-1 is obtained. Additionally, high stability with a capacity retention of 73% over 100 cycles is achieved at charge/discharge rates of 0.2 A g-1 This journal is © The Royal Society of Chemistry.
  • Item
    Breakdown of continuum models for spherical probe adhesion tests on micropatterned surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2021) Bettscheider, Simon; Yu, Dan; Foster, Kimberly; McMeeking, Robert; Arzt, Eduard; Hensel, René; Booth, Jamie A.
    The adhesion of fibrillar dry adhesives, mimicking nature's principles of contact splitting, is commonly characterized by using axisymmetric probes having either a flat punch or spherical geometry. When using spherical probes, the adhesive pull-off force measured depends strongly on the compressive preload applied when making contact and on the geometry of the probe. Together, these effects complicate comparisons of the adhesive performance of micropatterned surfaces measured in different experiments. In this work we explore these issues, extending previous theoretical treatments of this problem by considering a fully compliant backing layer with an array of discrete elastic fibrils on its surface. We compare the results of the semi-analytical model presented to existing continuum theories, particularly with respect to determining a measurement system- and procedure-independent metric for the local adhesive strength of the fibrils from the global pull-off force. It is found that the discrete nature of the interface plays a dominant role across a broad range of relevant system parameters. Accordingly, a convenient tool for simulation of a discrete array is provided. An experimental procedure is recommended for use in conjunction with this tool in order to extract a value for the local adhesive strength of the fibrils, which is independent of the other system properties (probe radius, backing layer thickness, and preload) and thus is suitable for comparison across experimental studies.
  • Item
    Rhodamine 6G and 800 intermolecular heteroaggregates embedded in PMMA for near-infrared wavelength shifting
    (London [u.a.] : RSC, 2022) Castillo-Seoane, Javier; Gonzalez-Garcia, Lola; Obrero-Perez, José M.; Aparicio, Francisco J.; Borrás, Ana; González-Elipe, Agustín R.; Barranco, Ángel; Sanchez-Valencia, Juan R.
    The opto-electronic properties of small-molecules and functional dyes usually differ when incorporated into solid matrices with respect to their isolated form due to an aggregation phenomenon that alters their optical and fluorescent properties. These spectroscopic modifications are studied in the framework of the exciton theory of aggregates, which has been extensively applied in the literature for the study of molecular aggregates of the same type of molecules (homoaggregation). Despite the demonstrated potential of the control of the heteroaggregation process (aggregation of different types of molecules), most of the reported works are devoted to intramolecular aggregates, complex molecules formed by several chromophores attached by organic linkers. The intramolecular aggregates are specifically designed to hold a certain molecular structure that, on the basis of the exciton theory, modifies their optical and fluorescent properties with respect to the isolated chromophores that form the molecule. The present article describes in detail the incorporation of Rhodamine 6G (Rh6G) and 800 (Rh800) into polymeric matrices of poly-(methyl methacrylate), PMMA. The simultaneous incorporation of both dyes results in an enhanced fluorescent emission in the near-infrared (NIR), originating from the formation of ground-state Rh6G–Rh800 intermolecular heteroaggregates. The systematic control of the concentration of both rhodamines provides a model system for the elucidation of the heteroaggregate formation. The efficient energy transfer between Rh6G and Rh800 molecules can be used as wavelength shifters to convert effectively the light from visible to NIR, a very convenient wavelength range for many practical applications which make use of inexpensive commercial detectors and systems.
  • Item
    Optoacoustically induced auditory brainstem responses in the mouse model enhanced through an absorbing film
    (Bellingham, Wash. : SPIE, 2021) Sorg, Katharina; Heimann, Larissa; Lana, Gabriela Moreira; Langenbucher, Achim; Schick, Bernhard; Arzt, Eduard; Wenzel, Gentiana Ioana
    Significance: Optoacoustic stimulation offers an alternative stimulation strategy for the hearing organ. To serve as the base for a novel auditory prosthesis, the optoacoustic stimulation must be biocompatible and energy-saving. Aim: Enhancing the efficiency of optoacoustic stimulation while reducing the energy input in a suited animal model. Approach: Optoacoustically induced auditory brainstem responses (oABRs) were recorded after the pulsed laser irradiation of the tympanic membrane (TM) in mice. The results were compared with the ABRs induced through acoustic click stimulation. In addition, self-adhesive absorbing films were applied on the TM before the optoacoustic stimulation to investigate their effect on the resulting ABRs.Results: Using an absorbing film on the TM during optical stimulation led to considerably enhanced oABR wave I amplitude values compared with the stimulation of the bare TM. When using our stimulation strategy, we induced oABR waves in the 50% to 60% range of the acoustical stimulation reached with 80-dB SPL click stimuli. Conclusions: The mouse model can be used for certain developmental work for an optoacoustic auditory prosthesis. Using absorbing films on the TM during optical stimulation considerably enhances oABR wave I amplitude. Optimization of the stimulation strategy could further enhance the efficiency within biocompatibility margins.
  • Item
    Perspective on statistical effects in the adhesion of micropatterned surfaces
    (Melville, NY : American Inst. of Physics, 2021) Booth, Jamie A.; Hensel, René
    Bioinspired micropatterned adhesives have attracted extensive research interest in the past two decades. In modeling the performance of these adhesives, the common assumption has been that the adhesive strength of each sub-contact is identical. Recent experiments, however, have shown that interfacial defects of different characters lead to a distribution of the adhesive strength within a fibrillar array. Based on experimental observations of detachment events, a statistical model for the distribution of the local adhesive strength and the resulting performance of a micropatterned adhesive are presented. This approach constitutes a paradigm shift, providing better understanding of micropatterned adhesives under real conditions. Examples presented include the prediction of unstable detachments in compliant systems. Future directions are discussed, including the extension of the statistical approach to non-uniform loading and rate-dependent effects, the contribution of suction to adhesion and aging of contacts over specific time periods, as well as the necessity for a more in-depth understanding of defect formation considering surface roughness and other imperfections in the system.