Search Results

Now showing 1 - 10 of 50
  • Item
    Microwave plasma discharges for biomass pretreatment: Degradation of a sodium carboxymethyl cellulose model
    (New York, NY : American Inst. of Physics, 2020) Honnorat, B.; Brüser, V.; Kolb, J.F.
    Biogas production is an important component of an environmentally benign renewable energy strategy. However, the cost-effectiveness of biogas production from biomass is limited by the presence of polymeric structures, which are recalcitrant to digestion by bacteria. Therefore, pretreatments must often be applied prior to anaerobic fermentation to increase yields of biogas. Many physico-chemical pretreatments have a high energy demand and are generally costly. An alternative could be the ignition of a plasma directly in the biomass substrate. The reactive species that are generated by plasma-liquid interactions, such as hydroxyl radicals and hydrogen peroxides, could contribute significantly to the disintegration of cell walls and the breakage of poorly digestible polymers. With respect to economic, processing, and other potential benefits, a microwave instigated and sustained plasma was investigated. A microwave circuit transmitted 2-kW pulses into a recirculated sodium carboxymethyl cellulose solution, which mimicked the rheological properties of biomass. Each microwave pulse had a duration of 12.5 ms and caused the ignition of a discharge after a vapor bubble had formed. Microwaves were absorbed in the process with an efficiency of ∼97%. Slow-motion imaging showed the development of the discharge. The plasma discharges provoked a decrease in the viscosity, probably caused by the shortening of polymer chains of the cellulose derivative. The decrease in viscosity by itself could reduce processing costs and promotes bacterial activity in actual biomass. The results demonstrate the potential of microwave in-liquid plasma discharges for the pretreatment of biomass. © 2020 Author(s).
  • Item
    Comprehensive characterization of osseous tissues from impedance measurements by effective medium approximation
    (New York, NY : American Inst. of Physics, 2021) Wei, Wenzuo; Shi, Fukun; Zhuang, Jie; Kolb, Juergen F.
    A unified mixing (UM) model was developed to derive microstructural information of trabecular bone, i.e., bone volume fraction (BV/TV), from electrical impedance spectroscopy. A distinct advantage of the UM-model over traditional methods, such as equivalent circuit models and multivariate analysis, is that the influence of both the environment (hydroxyapatite) and different inclusions (water, fat, and air) can be taken into account simultaneously. In addition, interactions between the different components such as interfacial polarization can be addressed by a dedicated fitting parameter v. Accordingly, values of BV/TV for different bone samples, e.g., including or not including water, were determined in the higher frequency range of 1-5 MHz. Results showed good agreement with experimental data obtained by micro-computer tomography. In particular, predictions for dielectric parameters that were derived for 3 and 4 MHz were found most promising for the assessment and distinction of osteopathic conditions and differences. This was shown by a clear differentiation of osseous tissues, e.g., the greater trochanter, femoral head, and femoral neck.
  • Item
    On the relationship between SiF4plasma species and sample properties in ultra low-k etching processes
    (New York, NY : American Inst. of Physics, 2020) Haase, Micha; Melzer, Marcel; Lang, Norbert; Ecke, Ramona; Zimmermann, Sven; van Helden, Jean-Pierre H.; Schulz, Stefan E.
    The temporal behavior of the molecular etching product SiF4 in fluorocarbon-based plasmas used for the dry etching of ultra low-k (ULK) materials has been brought into connection with the polymer deposition on the surface during plasma treatment within the scope of this work. For this purpose, time-resolved measurements of the density of SiF4 have been performed by quantum cascade laser absorption spectroscopy. A quantification of the non-linear time dependence was achieved by its characterization via a time constant of the decreasing SiF4 density over the process time. The time constant predicts how fast the stationary SiF4 density is reached. The higher the time constant is, the thicker the polymer film on top of the treated ultra low-k surface. A correlation between the time constant and the ULK damage was also found. ULK damage and polymer deposition were proven by Variable Angle Spectroscopic Ellipsometry and X-ray Photoelectron Spectroscopy. In summary, the observed decay of the etching product concentration over process time is caused by the suppressed desorption of the SiF4 molecules due to a more dominant adsorption of polymers. © 2020 Author(s).
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.
  • Item
    Development of an electrochemical sensor for in-situ monitoring of reactive species produced by cold physical plasma
    (Amsterdam [u.a.] : Elsevier Science, 2021) Nasri, Zahra; Bruno, Giuliana; Bekeschus, Sander; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    The extent of clinical applications of oxidative stress-based therapies such as photodynamic therapy (PDT) or respiratory chain disruptors are increasing rapidly, with cold physical plasma (CPP) emerging as a further option. According to the current knowledge, the biological effects of CPP base on reactive oxygen and nitrogen species (RONS) relevant in cell signaling. To monitor the safety and the biological impact of the CPP, determining the local generation of RONS in the same environment in which they are going to be applied is desirable. Here, for the first time, the development of an electrochemical sensor for the simple, quick, and parallel determination of plasma-generated reactive species is described. The proposed sensor consists of a toluidine blue redox system that is covalently attached to a gold electrode surface. By recording chronoamperometry at different potentials, it is possible to follow the in-situ production of the main long-lived reactive oxygen and nitrogen species like hydrogen peroxide, nitrite, hypochlorite, and chloramine with time. The applicability of this electrochemical sensor for the in-situ assessment of reactive species in redox-based therapies is demonstrated by the precise analysis of hydrogen peroxide dynamics in the presence of blood cancer cells.
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.
  • Item
    The HITRAN2020 molecular spectroscopic database
    (New York, NY [u.a.] : Elsevier, 2022) Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; Wcisło, P.; Finenko, A.A.; Nelson, K.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; Coustenis, A.; Drouin, B.J.; Flaud, J.M.; Gamache, R.R.; Hodges, J.T.; Jacquemart, D.; Mlawer, E.J.; Nikitin, A.V.; Perevalov, V.I.; Rotger, M.; Tennyson, J.; Toon, G.C.; Tran, H.; Tyuterev, V.G.; Adkins, E.M.; Baker, A.; Barbe, A.; Canè, E.; Császár, A.G.; Dudaryonok, A.; Egorov, O.; Fleisher, A.J.; Fleurbaey, H.; Foltynowicz, A.; Furtenbacher, T.; Harrison, J.J.; Hartmann, J.M.; Horneman, V.M.; Huang, X.; Karman, T.; Karns, J.; Kassi, S.; Kleiner, I.; Kofman, V.; Kwabia-Tchana, F.; Lavrentieva, N.N.; Lee, T.J.; Long, D.A.; Lukashevskaya, A.A.; Lyulin, O.M.; Makhnev, V.Yu.; Matt, W.; Massie, S.T.; Melosso, M.; Mikhailenko, S.N.; Mondelain, D.; Müller, H.S.P.; Naumenko, O.V.; Perrin, A.; Polyansky, O.L.; Raddaoui, E.; Raston, P.L.; Reed, Z.D.; Rey, M.; Richard, C.; Tóbiás, R.; Sadiek, I.; Schwenke, D.W.; Starikova, E.; Sung, K.; Tamassia, F.; Tashkun, S.A.; Vander Auwera, J.; Vasilenko, I.A.; Vigasin, A.A.; Villanueva, G.L.; Vispoel, B.; Wagner, G.; Yachmenev, A.; Yurchenko, S.N.
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  • Item
    The effect of oxygen admixture on the properties of microwave generated plasma in Ar-O2: A modelling study
    (Bristol : IOP Publ., 2021) Baeva, M; Stankov, M; Trautvetter, T; Methling, R; Hempel, F; Loffhagen, D; Foest, R
    This work presents results of a self-consistent modelling analysis on microwave plasma generated in Ar-O2 mixtures at a frequency of 2.45 GHz at atmospheric pressure. The study focuses on how the plasma properties are influenced by the increase of the oxygen fraction in the gas mixture. The oxygen admixture is increased from 1% up to 95% in mass for values of the input microwave power of 1 and 1.5 kW. The results show that for a power of 1 kW and gradually increasing the oxygen admixture from 1% to 25% the electron density drops by a factor of more than four due to the energy lost by the electrons due to dissociation of oxygen molecules and the gas heating. An analysis of the number densities of species produced in the Ar-O2 plasma is presented. Oxygen admixtures of above 50% are considered along with an increase of the input microwave power in order to supply the discharge with electron number density values of the order of 1019 m-3. Gas temperatures above 3700 K are obtained in the plasma core along with a strong production of oxygen atoms with a number density of the order of 1023 m-3.
  • Item
    Electric field determination in transient plasmas: in situ & non-invasive methods
    (Bristol : IOP Publ., 2022) Goldberg, Benjamin M.; Hoder, Tomáš; Brandenburg, Ronny
    One of the primary basic plasma parameters within transient nonequilibrium plasmas is the reduced electric field strength, roughly understood as the ratio of the electrical energy given to the charged species between two collisions. While physical probes have historically been used for electric field measurements, recent advances in high intensity lasers and sensitive detection methods have allowed for non-invasive optical electric field determination in nearly any discharge configuration with time-resolution up to the sub-nanosecond range and sub-millimeter spatial resolution. This topical review serves to highlight several non-invasive methods for in situ electric field strength determination in transient plasmas ranging from high vacuum environments to atmospheric pressure and above. We will discuss the advantages and proper implementation of (i) laser induced fluorescence dip spectroscopy for measurements in low pressure RF discharges, (ii) optical emission spectroscopy based methods for nitrogen, helium or hydrogen containing discharges, (iii) electric field induced coherent Raman scattering, and (iv) electric field induced second harmonic generation. The physical mechanism for each method will be described as well as basic implementation and highlighting recent results.
  • Item
    Foundations of plasma standards
    (Bristol : IOP Publ., 2023) Alves, Luís L.; Becker, Markus M.; van Dijk, Jan; Gans, Timo; Go, David B.; Stapelmann, Katharina; Tennyson, Jonathan; Turner, Miles M.; Kushner, Mark J.
    The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.