Search Results

Now showing 1 - 10 of 151
  • Item
    Nonlinear Optical Investigation of Microbial Chromoproteins
    (Lausanne : Frontiers Media, 2020) Krekic, Szilvia; Zakar, Tomás; Gombos, Zoltán; Valkai, Sándor; Mero, Mark; Zimányi, László; Heiner, Zsuzsanna; Dér, András
    Membrane-bound or cytosolic light-sensitive proteins, playing a crucial role in energy- and signal-transduction processes of various photosynthetic microorganisms, have been optimized for sensing or harvesting light by myriads of years of evolution. Upon absorption of a photon, they undergo a usually cyclic reaction series of conformations, and the accompanying spectro-kinetic events assign robust nonlinear optical (NLO) properties for these chromoproteins. During recent years, they have attracted a considerable interest among researchers of the applied optics community as well, where finding the appropriate NLO material for a particular application is a pivotal task. Potential applications have emerged in various branches of photonics, including optical information storage and processing, higher-harmonic and white-light continuum generation, or biosensorics. In our earlier work, we also raised the possibility of using chromoproteins, such as bacteriorhodopsin (bR), as building blocks for the active elements of integrated optical (IO) circuits, where several organic and inorganic photonic materials have been considered as active components, but so far none of them has been deemed ideal for the purpose. In the current study, we investigate the linear and NLO properties of biofilms made of photoactive yellow protein (PYP) and bR. The kinetics of the photoreactions are monitored by time-resolved absorption experiments, while the refractive index of the films and its light-induced changes are measured using the Optical Waveguide Lightmode Spectroscopy (OWLS) and Z-scan techniques, respectively. The nonlinear refractive index and the refractive index change of both protein films were determined in the green spectral range in a wide range of intensities and at various laser repetition rates. The nonlinear refractive index and refractive index change of PYP were compared to those of bR, with respect to photonics applications. Our results imply that the NLO properties of these proteins make them promising candidates for utilization in applied photonics, and they should be considered as valid alternatives for active components of IO circuits. © Copyright © 2020 Krekic, Zakar, Gombos, Valkai, Mero, Zimányi, Heiner and Dér.
  • Item
    Strong-Field Ionization of Linear Molecules by a Bichromatic Elliptically Polarized Laser Field with Coplanar Counterrotating or Corotating Components of Different Frequencies
    (Bristol : IOP Publ., 2020) Gazibegović-Busuladžić, A.; Busuladžić, M.; Čerkić, A.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate strong-field ionization of linear molecules by a two-color laser field of frequencies rω and sω having coplanar counterrotating or corotating elliptically polarized components (ω is the fundamental laser field frequency and r and s are integers). Using the improved molecular strong-field approximation we analyze direct above-threshold ionization (ATI) and high-order ATI (HATI) spectra. More precisely, reflection and rotational symmetries of these spectra for linear molecules aligned in the laser-field polarization plane are considered. The reflection symmetries for particular molecular orientations, known to be valid for a bicircular field (this is the field with circularly polarized counterrotating components), are valid also for arbitrary component ellipticities. However, specific rotational symmetries that are satisfied for HATI by a bicircular field, are violated for an arbitrary elliptically polarized field with counterrotating components. For the corotating case and the N2 molecule we analyze molecular-orientation-dependent interferences and plateau structures for various ellipticities.
  • Item
    35 W continuous-wave Ho:YAG single-crystal fiber laser
    (Cambridge : Cambridge Univ. Press, 2020) Zhao, Yongguang; Wang, Li; Chen, Weidong; Wang, Jianlei; Song, Qingsong; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Xu, Jun; Mateos, Xavier; Loiko, Pavel; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin
    We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.
  • Item
    Micro Fresnel mirror array with individual mirror control
    (Bristol : IOP Publ., 2020) Poyyathuruthy Bruno, Binal; Schütze, Robert; Grunwald, Ruediger; Wallrabe, Ulrike
    We present the design and fabrication of a miniaturized array of piezoelectrically actuated high speed Fresnel mirrors with individual mirror control. These Fresnel mirrors can be used to generate propagation invariant and self-healing interference patterns. The mirrors are actuated using piezobimorph actuators, and the consequent change of the tilting angle of the mirrors changes the fringe spacing of the interference pattern generated. The array consists of four Fresnel mirrors each having an area of 2 × 2 mm2 arranged in a 2x2 configuration. The device, optimized using FEM simulations, is able to achieve maximum mirror deflections of 15 mrad, and has a resonance frequency of 28 kHz.
  • Item
    In situ temporal measurement of ultrashort laser pulses at full power during high-intensity laser–matter interactions
    (Washington, DC : OSA, 2020) Crespo, Helder M.; Witting, Tobias; Canhota, Miguel; Miranda, Miguel; Tisch, John W.G
    In laser-matter interaction experiments, it is of paramount importance to characterize the laser pulse on target (in situ) and at full power. This allows pulse optimization and meaningful comparison with theory, and it can shed fundamental new light on pulse distortions occurring in or on the target.Here we introduce and demonstrate a new technique based on dispersion-scan using the concurrent third harmonic emission from the target that permits the full (amplitude and phase), in situ, in-parallel characterization of ultrashort laser pulses in a gas or solid target over a very wide intensity range encompassing the 1013-1015Wcm-2regime of high harmonic generation and other important strong-field phenomena, with possible extension to relativistic intensities presently inaccessible to other diagnostics. © 2020 OSA - The Optical Society. All rights reserved.
  • Item
    Origin of Terahertz Soft-Mode Nonlinearities in Ferroelectric Perovskites
    (College Park, Md. : APS, 2021) Pal, Shovon; Strkalj, Nives; Yang, Chia-Jung; Weber, Mads C.; Trassin, Morgan; Woerner, Michael; Fiebig, Manfred
    Soft modes are intimately linked to structural instabilities and are key for the understanding of phase transitions. The soft modes in ferroelectrics, for example, map directly the polar order parameter of a crystal lattice. Driving these modes into the nonlinear, frequency-changing regime with intense terahertz (THz) light fields is an efficient way to alter the lattice and, with it, the physical properties. However, recent studies show that the THz electric-field amplitudes triggering a nonlinear soft-mode response are surprisingly low, which raises the question on the microscopic picture behind the origin of this nonlinear response. Here, we use linear and two-dimensional terahertz (2D THz) spectroscopy to unravel the origin of the soft-mode nonlinearities in a strain-engineered epitaxial ferroelectric SrTiO3 thin film. We find that the linear dielectric function of this mode is quantitatively incompatible with pure ionic or pure electronic motions. Instead, 2D THz spectroscopy reveals a pronounced coupling of electronic and ionic-displacement dipoles. Hence, the soft mode is a hybrid mode of lattice (ionic) motions and electronic interband transitions. We confirm this conclusion with model calculations based on a simplified pseudopotential concept of the electronic band structure. It reveals that the entire THz nonlinearity is caused by the off-resonant nonlinear response of the electronic interband transitions of the lattice-electronic hybrid mode. With this work, we provide fundamental insights into the microscopic processes that govern the softness that any material assumes near a ferroic phase transition. This knowledge will allow us to gain an efficient all-optical control over the associated large nonlinear effects.
  • Item
    Stable coherent mode-locking based on π pulse formation in single-section lasers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Rosanov, Nikolay
    Here we consider coherent mode-locking (CML) regimes in single-section cavity lasers, taking place for pulse durations less than atomic population and phase relaxation times, which arise due to coherent Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, the gain and absorber ones. Here we show that, for certain combination of the cavity length and relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode-locking is unconditionally self-starting and appears due to balance of intra-pulse de-excitation and slow interpulse-scale pump-induced relaxation processes. We also discuss the scaling of the system to shorter pulse durations, showing a possibility of mode-locking for few-cycle pulses.
  • Item
    Femtosecond XUV–IR induced photodynamics in the methyl iodide cation
    ([London] : IOP, 2021) Murillo-Sánchez, Marta L.; Reitsma, Geert; Poullain, Sonia Marggi; Fernández-Milán, Pedro; González-Vázquez, Jesús; de Nalda, Rebeca; Martín, Fernando; Vrakking, Marc J. J.; Kornilov, Oleg; Bañares, Luis
    The time-resolved photodynamics of the methyl iodide cation (CH3I+) are investigated by means of femtosecond XUV-IR pump-probe spectroscopy. A time-delay-compensated XUV monochromator is employed to isolate a specific harmonic, the 9th harmonic of the fundamental 800 nm (13.95 eV, 88.89 nm), which is used as a pump pulse to prepare the cation in several electronic states. A time-delayed IR probe pulse is used to probe the dissociative dynamics on the first excited state potential energy surface. Photoelectrons and photofragment ions - and I+ - are detected by velocity map imaging. The experimental results are complemented with high level ab initio calculations for the potential energy curves of the electronic states of CH3I+ as well as with full dimension on-the-fly trajectory calculations on the first electronically excited state, considering the presence of the IR pulse. The and I+ pump-probe transients reflect the role of the IR pulse in controlling the photodynamics of CH3I+ in the state, mainly through the coupling to the ground state and to the excited state manifold. Oscillatory features are observed and attributed to a vibrational wave packet prepared in the state. The IR probe pulse induces a coupling between electronic states leading to a slow depletion of fragments after the cation is transferred to the ground states and an enhancement of I+ fragments by absorption of IR photons yielding dissociative photoionization. © 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Thin-disk laser-pumped OPCPA system delivering 4.4 TW few-cycle pulses
    (Washington, DC : Soc., 2020) Kretschmar, Martin; Tuemmler, Johannes; Schütte, Bernd; Hoffmann, Andreas; Senfftleben, Björn; Mero, Mark; Sauppe, Mario; Rupp, Daniela; Vrakking, Marc J.J.; Will, Ingo; Nagy, Tamas
    We present an optical parametric chirped pulse amplification (OPCPA) system delivering 4.4 TW pulses centered at 810 nm with a sub-9 fs duration and a carrier-envelope phase stability of 350 mrad. The OPCPA setup pumped by sub-10 ps pulses from two Yb:YAG thin-disk lasers at 100 Hz repetition rate is optimized for a high conversion-efficiency. The terawatt pulses of the OPCPA are utilized for generating intense extreme ultraviolet (XUV) pulses by high-order harmonic generation, achieving XUV pulse energies approaching the microjoule level. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
  • Item
    Temperature-Dependent Charge Carrier Diffusion in [0001¯] Direction of GaN Determined by Luminescence Evaluation of Buried InGaN Quantum Wells
    (Weinheim : Wiley-VCH, 2020) Netzel, Carsten; Hoffmann, Veit; Tomm, Jens W.; Mahler, Felix; Einfeldt, Sven; Weyers, Markus
    Temperature-dependent transport of photoexcited charge carriers through a nominally undoped, c-plane GaN layer toward buried InGaN quantum wells is investigated by continuous-wave and time-resolved photoluminescence spectroscopy. The excitation of the buried InGaN quantum wells is dominated by charge carrier diffusion through the GaN layer; photon recycling contributes only slightly. With temperature decreasing from 310 to 10 K, the diffusion length in [0001⎯⎯] direction increases from 250 to 600 nm in the GaN layer. The diffusion length at 300 K also increases from 100 to 300 nm when increasing the excitation power density from 20 to 500 W cm−2. The diffusion constant decreases from the low-temperature value of ∼7 to 1.5 cm2 s−1 at 310 K. The temperature dependence of the diffusion constant indicates that the diffusivity at room temperature is limited by optical phonon scattering. Consequently, higher diffusion constants in GaN-based devices require a reduced operation temperature. To increase diffusion lengths at a fixed temperature, the effective recombination time has to be prolonged by reducing the number of nonradiative recombination centers.