Search Results

Now showing 1 - 3 of 3
  • Item
    Field-induced interactions in magneto-active elastomers - a comparison of experiments and simulations
    (Bristol : IOP Publ., 2020) Metsch, P.; Schmidt, H.; Sindersberger, D.; Kalina, K.A.; Brummund, J.; Auernhammer, G.K.; Monkman, G.J.; Kästner, M.
    In this contribution, field-induced interactions of magnetizable particles embedded into a soft elastomer matrix are analyzed with regard to the resulting mechanical deformations. By comparing experiments for two-, three- and four-particle systems with the results of finite element simulations, a fully coupled continuum model for magneto-active elastomers is validated with the help of real data for the first time. The model under consideration permits the investigation of magneto-active elastomers with arbitrary particle distances, shapes and volume fractions as well as magnetic and mechanical properties of the individual constituents. It thus represents a basis for future studies on more complex, realistic systems. Our results show a very good agreement between experiments and numerical simulations—the deformation behavior of all systems is captured by the model qualitatively as well as quantitatively. Within a sensitivity analysis, the influence of the initial particle positions on the systems' response is examined. Furthermore, a comparison of the full three-dimensional model with the often used, simplified two-dimensional approach shows the typical overestimation of resulting interactions in magneto-active elastomers.
  • Item
    Multifunctional-high resolution imaging plate based on hydrophilic graphene for digital pathology
    (Bristol : IOP Publ., 2022) Lee, Geonhee; Oh, Yuna; Nam, Jung Tae; Ji, Seulgi; Jang, A.-Rang; Jeong, Du Won; Kang, MinSoung; Lee, Sun Sook; Chae, Soosang; Cho, Donghwi; Hwang, Jun Yeon; Lee, Kyungeun; Lee, Jeong-O.
    In the present study, we showed that hydrophilic graphene can serve as an ideal imaging plate for biological specimens. Graphene being a single-atom-thick semi-metal with low secondary electron emission, array tomography analysis of serial sections of biological specimens on a graphene substrate showed excellent image quality with improved z-axis resolution, without including any conductive surface coatings. However, the hydrophobic nature of graphene makes the placement of biological specimens difficult; graphene functionalized with polydimethylsiloxane oligomer was fabricated using a simple soft lithography technique and then processed with oxygen plasma to provide hydrophilic graphene with minimal damage to graphene. High-quality scanning electron microscopy images of biological specimens free from charging effects or distortion were obtained, and the optical transparency of graphene enabled fluorescence imaging of the specimen; high-resolution correlated electron and light microscopy analysis of the specimen became possible with the hydrophilic graphene plate.
  • Item
    Beamline-implemented stretching devices for in situ X-ray scattering experiments
    (Bristol : IOP Publ., 2022) Euchler, E.; Sambale, A.K.; Schneider, K.; Uhlig, K.; Boldt, R.; Stommel, M.; Stribeck, A.; Schwartzkopf, M.; Rothkirch, A.; Roth, S.V.
    Two recently developed experimental devices for investigating soft matter deformation are presented. Both devices exploit the capabilities of a modern synchrotron beamline to enable advanced and highly precise materials-science experiments in which X-ray scattering is registered. The devices can be operated both in monotonic as well as cyclic mode and are implemented into a beamline at DESY, Hamburg (Germany). Hence, relevant experimental parameters, such as displacement, force and temperature, are recorded synchronously with the individual X-ray scattering patterns. In addition, spatial variation of materials deformation can be monitored and recorded with optical microscopy. This unique sample environment enables in situ X-ray experiments in transmission, i.e. small- or wide-angle X-ray scattering (SAXS or WAXS), and in grazing-incidence geometry, i.e. grazing-incidence (GI-) SAXS or WAXS. One device with stepper motors is designed for studies of slow, (quasi-) static deformation and the other one with pneumatic actuators can be used for fast, impact deformation. Both devices are available to external beamline users, too.