Search Results

Now showing 1 - 10 of 23
  • Item
    Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting
    (Weinheim : Wiley-VCH, 2021) Steinkühler, Jan; Fonda, Piermarco; Bhatia, Tripta; Zhao, Ziliang; Leomil, Fernanda S. C.; Lipowsky, Reinhard; Dimova, Rumiana
    Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2–4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a “superelastic” response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.
  • Item
    Spectrometer‐free Optical Hydrogen Sensing Based on Fano‐like Spatial Distribution of Transmission in a Metal−Insulator−Metal Plasmonic Doppler Grating
    (Weinheim : Wiley-VCH, 2021) Chen, Yi‐Ju; Lin, Fan‐Cheng; Singh, Ankit Kumar; Ouyang, Lei; Huang, Jer‐Shing
    Optical nanosensors are promising for hydrogen sensing because they are small, free from spark generation, and feasible for remote optical readout. Conventional optical nanosensors require broadband excitation and spectrometers, rendering the devices bulky and complex. An alternative is spatial intensity-based optical sensing, which only requires an imaging system and a smartly designed platform to report the spatial distribution of analytical optical signals. Here, a spatial intensity-based hydrogen sensing platform is presented based on Fano-like spatial distribution of the transmission in a Pd-Al2O3-Au metal-insulator-metal plasmonic Doppler grating (MIM-PDG). The MIM-PDG manifests the Fano resonance as an asymmetric spatial transmission intensity profile. The absorption of hydrogen changes the spatial Fano-like transmission profiles, which can be analyzed with a “spatial” Fano resonance model and the extracted Fano resonance parameters can be used to establish analytical calibration lines. While gratings sensitive to hydrogen absorption are suitable for hydrogen sensing, hydrogen insensitive gratings are also found, which provide an unperturbed reference signal and may find applications in nanophotonic devices that require a stable optical response under fluctuating hydrogen atmosphere. The MIM-PDG platform is a spectrometer-free and intensity-based optical sensor that requires only an imaging system, making it promising for cellphone-based optical sensing applications. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH.
  • Item
    Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers
    (Weinheim : Wiley-VCH, 2023) Turishchev, Sergey; Schleusener, Alexander; Chuvenkova, Olga; Parinova, Elena; Liu, Poting; Manyakin, Maxim; Kurganskii, Sergei; Sivakov, Vladimir
    The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal–organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation. The “one spot” combination, containing a chemically sensitive morphology and spectroscopic data, is examined via photoemission electron microscopy in the X-ray absorption near-edge structure spectroscopy (XANES) mode. The observed spectromicroscopy results showed that the entire SiNW surface is covered with a tin(IV) oxide layer and traces of tin(II) oxide and metallic tin phases. The deviation from stoichiometric SnO2 leads to the formation of the density of states sub-band in the atop tin oxide layer bandgap close to the bottom of the SnO2 conduction band. These observations open up the possibility of the precise surface electronic structures estimation using photo-electron microscopy in XANES mode.
  • Item
    Shape-Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Bätz, Thomas; Zechel, Stefan; Enke, Marcel; Vitz, Jürgen; Schmitt, Michael; Popp, Jürgen; Hager, Martin D.; Schubert, Ulrich S.
    A new shape-memory polymer is presented, in which both the stable phase as well as the switching unit consist of two different metal complexes. Suitable metal ions, which simultaneously form labile complexes with histidine and stable ones with terpyridine ligands, are identified via isothermal titration calorimetry (ITC) measurements. Different copolymers are synthesized, which contain butyl methacrylate as the main monomer and the metal-binding ligands in the side chains. Zn(TFMS)2 and NiCl2 are utilized for the dual crosslinking, resulting in the formation of metallopolymer networks. The switching temperature can simply be tuned by changing the composition as well as by the choice of the metal ion. Strain fixity rates (about 99%) and very high strain recovery rates (up to 95%) are achieved and the mechanism is revealed using different techniques such as Raman spectroscopy. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Emission Manipulation by DNA Origami‐Assisted Plasmonic Nanoantennas
    (Weinheim : Wiley-VCH, 2021) Yeşilyurt, Ayşe Tuğça Mina; Huang, Jer‐Shing
    Plasmonic nanoantennas mediate far and near optical fields and confine the light to subwavelength dimensions. The spatial organization of nanoantenna elements is critical as it affects the interelement coupling and determines the resultant antenna mode. To couple quantum emitters to optical antennas, high precision on the order of a few nm with respect to the antenna is necessary. As an emerging nanofabrication technique, DNA origami has proven itself to be a robust nanobreadboard to obtain sub-5 nm positioning precision for a diverse range of materials. Eliminating the need for expensive state-of-the-art top-down fabrication facilities, DNA origami enables cost-efficient implementation of nanoscale architectures, including novel nanoantennas. The ability of DNA origami to deterministically position single quantum emitters into nanoscale hotspots further boosts the efficiency of light–matter interaction controlled via optical antennas. This review recapitulates the recent progress in plasmonic nanoantennas assisted by DNA origami and focuses on their various configurations. How those nanoantennas act on the emission and absorption properties of quantum emitters positioned in the hotspots is explicitly discussed. In the end, open challenges are outlined and future possibilities lying ahead are pointed out for this powerful triad of biotechnology, nanooptics, and photophysics. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    It Takes Three to Tango - the length of the oligothiophene determines the nature of the long-lived excited state and the resulting photocytotoxicity of a Ru(II) photodrug
    (Weinheim : Wiley-VCH, 2021) Chettri, Avinash; Roque, John A.; Schneider, Kilian R.A.; Cole, Houston D.; Cameron, Colin G.; McFarland, Sherri A.; Dietzek, Benjamin
    TLD1433 is the first Ru(II) complex to be tested as a photodynamic therapy agent in a clinical trial. In this contribution we study TLD1433 in the context of structurally-related Ru(II)-imidozo[4,5-f][1,10]phenanthroline (ip) complexes appended with thiophene rings to decipher the unique photophysical properties which are associated with increasing oligothiophene chain length. Substitution of the ip ligand with ter- or quaterthiophene changes the nature of the long-lived triplet state from metal-to-ligand charge-transfer to 3ππ* character. The addition of the third thiophene thus presents a critical juncture which not only determines the photophysics of the complex but most importantly its capacity for 1O2 generation and hence the potential of the complex to be used as a photocytotoxic agent.
  • Item
    Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand
    (Weinheim : Wiley-VCH, 2020) Schneider, Kilian R.A.; Chettri, Avinash; Cole, Houston D.; Reglinski, Katharina; Breckmann, Jannik; Roque, John A. III; Stumper, Anne; Nauroozi, Djawed; Schmid, Sylvia; Lagerholm, Christoffer B.; Rau, Sven; Bäuerle, Peter; Eggeling, Christian; Cameron, Colin G.; McFarland, Sherri A.; Dietzek, Benjamin
    This contribution describes the excited-state properties of an Osmium-complex when taken up into human cells. The complex 1 [Os(bpy)2(IP-4T)](PF6)2 with bpy=2,2′-bipyridine and IP-4T=2-{5′-[3′,4′-diethyl-(2,2′-bithien-5-yl)]-3,4-diethyl-2,2′-bithiophene}imidazo[4,5-f][1,10]phenanthroline) can be discussed as a candidate for photodynamic therapy in the biological red/NIR window. The complex is taken up by MCF7 cells and localizes rather homogeneously within in the cytoplasm. To detail the sub-ns photophysics of 1, comparative transient absorption measurements were carried out in different solvents to derive a model of the photoinduced processes. Key to rationalize the excited-state relaxation is a long-lived 3ILCT state associated with the oligothiophene chain. This model was then tested with the complex internalized into MCF7 cells, since the intracellular environment has long been suspected to take big influence on the excited state properties. In our study of 1 in cells, we were able to show that, though the overall model remained the same, the excited-state dynamics are affected strongly by the intracellular environment. Our study represents the first in depth correlation towards ex-vivo and in vivo ultrafast spectroscopy for a possible photodrug. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease
    (Weinheim : Wiley-VCH, 2021) Dose, Benjamin; Thongkongkaew, Tawatchai; Zopf, David; Kim, Hak Joong; Bratovanov, Evgeni V.; García-Altares, María; Scherlach, Kirstin; Kumpfmüller, Jana; Ross, Claudia; Hermenau, Ron; Niehs, Sarah; Silge, Anja; Hniopek, Julian; Schmitt, Michael; Popp, Jürgen; Hertweck, Christian
    Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control. © 2021 The Authors. ChemBioChem published by Wiley-VCH GmbH
  • Item
    Yield—not only Lifetime—of the Photoinduced Charge-Separated State in Iridium Complex–Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity
    (Weinheim : Wiley-VCH, 2020) Luo, Yusen; Maloul, Salam; Schönweiz, Stefanie; Wächtler, Maria; Streb, Carsten; Dietzek, Benjamin
    Covalently linked photosensitizer–polyoxometalate (PS-POM) dyads are promising molecular systems for light-induced energy conversion processes, such as “solar” hydrogen generation. To date, very little is known of their fundamental photophysical properties which affect the catalytic reactivity and stability of the systems. PS-POM dyads often feature short-lived photoinduced charge-separated states, and the lifetimes of these states are considered crucial for the function of PS-POM dyads in molecular photocatalysis. Hence, strategies have been developed to extend the lifetimes of the photoinduced charge-separated states, either by tuning the PS photophysics or by tuning the POM redox properties. Recently, some of us reported PS-POM dyads based on cyclometalated IrIII complexes covalently linked to Anderson-type polyoxometalate. Distinct hydrogen evolution reactivity (HER) of the dyads was observed, which was tuned by varying the central metal ion M of the POMM (M=Mn3+, Co3+, Fe3+). In this manuscript, the photoinduced electron-transfer processes in the three Ir-POMM dyads are investigated to rationalize the underlying reasons for the differences in HER activity observed. We report that upon excitation of the IrIII complex, ultrafast (sub-ps) charge separation occurs, leading to different amounts of the charge-separated states (Ir.+-POMM.−) generated in the different dyads. However, in all dyads studied, the resulting Ir.+-POMM.− species are short-lived (sub-ns) when compared to reference electron acceptors (e.g. porphyrins or fullerenes) reported in the literature. The reductive quenching of Ir.+-POMM.− by a sacrificial donor, triethyl amine (1 m), to generate the intermediate Ir-POMM.− is estimated to be very efficient (70–80 %) for all dyads studied. Based on this analyses, we conclude that the yield instead of the lifetime of the Ir.+-POMM.− charge-separated state determines the catalytic capacity of the dyads investigated. This new feature in the PS-POM photophysics could lead to new design criteria for the development of novel PS-POM dyads. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Quinoline Photobasicity: Investigation within Water-Soluble Light-Responsive Copolymers
    (Weinheim : Wiley-VCH, 2021) Sittig, Maria; Tom, Jessica C.; Elter, Johanna K.; Schacher, Felix H.; Dietzek, Benjamin
    Quinoline photobases exhibit a distinctly higher pKa in their electronically excited state than in the ground state, thereby enabling light-controlled proton transfer reactions, for example, in molecular catalysis. The absorption of UV light translates to a pKa jump of approximately 10 units, as established for small-molecule photobases. This contribution presents the first synthesis of quinoline-based polymeric photobases prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The integration of quinolines as photobase chromophores within copolymers offers new possibilities for light-triggered proton transfer in nanostructured materials, that is, in nanoparticles, at surfaces, membranes and interfaces. To exploit the light-triggered reactivity of photobases within such materials, we first investigated how the ground- and excited-state properties of the quinoline unit changes upon polymer integration. To address this matter, we combined absorption and emission spectroscopy with time-resolved transient-absorption studies to reveal photoinduced proton-transfer dynamics in various solvents. The results yield important insights into the thermodynamic and kinetic properties of these polymeric quinoline photobases. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH