Search Results

Now showing 1 - 10 of 227
  • Item
    Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder
    (Weinheim : Wiley-VCH Verlag, 2020) Hartmann, Wladick; Varytis, Paris; Gehring, Helge; Walter, Nicolai; Beutel, Fabian; Busch, Kurt; Pernice, Wolfram
    Compact, on-chip spectrometers exploiting tailored disorder for broadband light scattering enable high-resolution signal analysis while maintaining a small device footprint. Due to multiple scattering events of light in the disordered medium, the effective path length of the device is significantly enhanced. Here, on-chip spectrometers are realized for visible and near-infrared wavelengths by combining an efficient broadband fiber-to-chip coupling approach with a scattering area in a broadband transparent silicon nitride waveguiding structure. Air holes etched into a structured silicon nitride slab terminated with multiple waveguides enable multipath light scattering in a diffusive regime. Spectral-to-spatial mapping is performed by determining the transmission matrix at the waveguide outputs, which is then used to reconstruct the probe signals. Direct comparison with theoretical analyses shows that such devices can be used for high-resolution spectroscopy from the visible up to the telecom wavelength regime. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Short-Range Cooperative Slow-down of Water Solvation Dynamics Around SO42--Mg2+ Ion Pairs
    (Washington, DC : American Chemical Society, 2022) Kundu, Achintya; Mamatkulov, Shavkat I.; Brünig, Florian N.; Bonthuis, Douwe Jan; Netz, Roland R.; Elsaesser, Thomas; Fingerhut, Benjamin P.
    The presence of ions affects the structure and dynamics of water on a multitude of length and time scales. In this context, pairs of Mg2+ and SO42- ions in water constitute a prototypical system for which conflicting pictures of hydration geometries and dynamics have been reported. Key issues are the molecular pair and solvation shell geometries, the spatial range of electric interactions, and their impact on solvation dynamics. Here, we introduce asymmetric SO42- stretching vibrations as new and most specific local probes of solvation dynamics that allow to access ion hydration dynamics at the dilute concentration (0.2 M) of a native electrolyte environment. Highly sensitive heterodyne 2D-IR spectroscopy in the fingerprint region of the SO42- ions around 1100 cm-1 reveals a specific slow-down of solvation dynamics for hydrated MgSO4 and for Na2SO4 in the presence of Mg2+ ions, which manifests as a retardation of spectral diffusion compared to aqueous Na2SO4 solutions in the absence of Mg2+ ions. Extensive molecular dynamics and density functional theory QM/MM simulations provide a microscopic view of the observed ultrafast dephasing and hydration dynamics. They suggest a molecular picture where the slow-down of hydration dynamics arises from the structural peculiarities of solvent-shared SO42--Mg2+ ion pairs.
  • Item
    Tailored Disorder in Photonics: Learning from Nature
    (Weinheim : Wiley-VCH, 2021) Rothammer, Maximilian; Zollfrank, Cordt; Busch, Kurt; Freymann, Georg von
    Disorder and photonics have long been seen as natural adversaries and designers of optical systems have often driven systems to perfection by minimizing deviations from the ideal design. Especially in the field of photonic crystals and metamaterials but also for optical circuits, disorder has been avoided as a nuisance for many years. However, starting from the very robust structural colors found in nature, scientists learn to analyze and tailor disorder to achieve functionalities beyond what is possible with perfectly ordered or ideal systems alone. This review article covers theoretical and materials aspects of tailored disorder as well as experimental results. Furthermore selected examples are highlighted in greater detail, for which the intentional use of disorder adds additional functionality or provides novel functionality impossible without disorder. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Graphene Q-switched Yb:KYW planar waveguide laser
    (New York, NY : American Inst. of Physics, 2015) Kim, Jun Wan; Young Choi, Sun; Aravazhi, Shanmugam; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Jun Ahn, Kwang; Yeom, Dong-Il; Rotermund, Fabian
    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.
  • Item
    High-energy few-cycle pulses: post-compression techniques
    (Abingdon : Taylor & Francis Group, 2021) Nagy, Tamas; Simon, Peter; Veisz, Laszlo
    Contemporary ultrafast science requires reliable sources of high-energy few-cycle light pulses. Currently two methods are capable of generating such pulses: post compression of short laser pulses and optical parametric chirped-pulse amplification (OPCPA). Here we give a comprehensive overview on the post-compression technology based on optical Kerr-effect or ionization, with particular emphasis on energy and power scaling. Relevant types of post compression techniques are discussed including free propagation in bulk materials, multiple-plate continuum generation, multi-pass cells, filaments, photonic-crystal fibers, hollow-core fibers and self-compression techniques. We provide a short theoretical overview of the physics as well as an in-depth description of existing experimental realizations of post compression, especially those that can provide few-cycle pulse duration with mJ-scale pulse energy. The achieved experimental performances of these methods are compared in terms of important figures of merit such as pulse energy, pulse duration, peak power and average power. We give some perspectives at the end to emphasize the expected future trends of this technology. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Needle beams: a review
    (Abingdon : Taylor and Francis Ltd., 2020) Grunwald R.; Bock M.
    Needle beams are highly attractive for applications which take advantage from a spatial and temporal localization of photons. High intensities, high resolution and extended depth of focus lead to fundamental advances in the optical system performance. Ultrashort, fringe-free, self-reconstructing nondiffracting pulses with undistorted temporal transfer are obtained by generating truncated Bessel beams under self-apodization conditions. Nondiffracting Talbot self-imaging of needle beam arrays enables to transfer near field information to the Fraunhofer zone. With addressable arrays of needle beams, reconfigurable time-wavefront sensors are built up. Moreover, spatial light modulators and flexible axicons are used to realize structured, highly localized wavepackets, accelerating beams and nondiffracting images. © 2020, © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Infrared emission bands and thermal effects for 440-nm-emitting GaN-based laser diodes
    (New York, NY : American Institute of Physics Inc., 2020) Mao F.; Hong J.; Wang H.; Chen Y.; Jing C.; Yang P.; Tomm J.W.; Chu J.; Yue F.
    Broad emission bands due to defects in (In,Ga,Al)N laser diodes operating at 440 nm are investigated using continuous-wave and pulsed currents. In addition to known yellow-green and short-wave infrared bands, defect emissions were observed even in the medium-wave infrared range. A separation from thermal radiation is possible. When using pulsed currents, a super-linearly increasing emission occurs at ∼1150 nm, which could be attributed to amplified spontaneous emission mainly due to the electroluminescence of deep defects in the optically active region. These results may be useful in interpreting the output power bottleneck of GaN-based lasers compared to mature GaAs-based lasers. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143802
  • Item
    Infrared spectroscopy in superfluid helium droplets
    (Abingdon : Taylor and Francis Ltd., 2019) Verma D.; Tanyag R.M.P.; O’Connell S.M.O.; Vilesov A.F.
    For more than two decades, encapsulation in superfluid helium nanodroplets has served as a reliable technique for probing the structure and dynamics of molecules and clusters at a low temperature of ≈0.37 K. Due to weak interactions between molecules and the host liquid helium, good spectral resolution can usually be achieved, making helium droplets an ideal matrix for spectroscopy in a wide spectral range from infrared to ultraviolet. Furthermore, rotational structure in the spectra of small molecules provides a unique probe for interactions with the superfluid on an atomic scale. This review presents a summary of results and a discussion of recent experimental developments in helium droplet spectroscopy with the emphasis laid on infrared studies. Initially, studies focused on single molecules and have been expanded to larger species, such as metal-molecular clusters, biomolecules, free radicals, ions, and proteins. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Excitation of H2 at large internuclear separation: F1∑+g outer well states and continuum resonances
    (London : Taylor & Francis, 2019) Trivikram, T.M.; Salumbides, E.J.; Jungen, Ch.; Ubachs, W.
    Bound and free quantum resonances of molecular hydrogen exhibiting wave-function density at large internuclear separation, (Formula presented.) 4–5 a.u., are excited via multi-step laser spectroscopy. Highly excited vibrational levels of H (Formula presented.) are prepared via two-photon UV-photolysis of H (Formula presented.) S. Subsequent two-photon Doppler-free precision measurements are performed connecting (Formula presented.) levels with (Formula presented.) outer-well levels. Detection and spectroscopic labelling of the quantum states is assisted by further laser excitation into the auto-ionisation continuum employing a third UV-laser. Level energies of high rotational states ((Formula presented.)) in the outer-well state (Formula presented.) are accurately determined. The three-laser study demonstrates a method for probing resonances in the H (Formula presented.) ionisation continuum with wave-function density at large internuclear separation (Formula presented.) 4–5 a.u., large angular momenta J, and energy range 131,100–133,000 cm-1, a hitherto unexplored territory. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances
    (Berlin : de Gruyter, 2022) Heßler, Andreas; Wahl, Sophia; Kristensen, Philip Trøst; Wuttig, Matthias; Busch, Kurt; Taubner, Thomas
    Phase-change materials (PCMs) allow for non-volatile resonance tuning of nanophotonic components. Upon switching, they offer a large dielectric contrast between their amorphous and crystalline phases. The recently introduced “plasmonic PCM” In3SbTe2 (IST) additionally features in its crystalline phase a sign change of its permittivity over a broad infrared spectral range. While optical resonance switching in unpatterned IST thin films has been investigated before, nanostructured IST antennas have not been studied, yet. Here, we present numerical and experimental investigations of nanostructured IST rod and disk antennas. By crystallizing the IST with microsecond laser pulses, we switched individual antennas from narrow dielectric to broad plasmonic resonances. For the rod antennas, we demonstrated a resonance shift of up to 1.2 µm (twice the resonance width), allowing on/off switching of plasmonic resonances with a contrast ratio of 2.7. With the disk antennas, we realized an increase of the resonance width by more than 800% from 0.24 µm to 1.98 µm while keeping the resonance wavelength constant. Further, we demonstrated intermediate switching states by tuning the crystallization depth within the resonators. Our work empowers future design concepts for nanophotonic applications like active spectral filters, tunable absorbers, and switchable flat optics.