Search Results

Now showing 1 - 10 of 14
  • Item
    Quantification of Dolichyl Phosphates Using Phosphate Methylation and Reverse-Phase Liquid Chromatography-High Resolution Mass Spectrometry
    (Columbus, Ohio : American Chemical Society, 2023) Kale, Dipali; Kikul, Frauke; Phapale, Prasad; Beedgen, Lars; Thiel, Christian; Brügger, Britta
    Dolichyl monophosphates (DolPs) are essential lipids in glycosylation pathways that are highly conserved across almost all domains of life. The availability of DolP is critical for all glycosylation processes, as these lipids serve as membrane-anchored building blocks used by various types of glycosyltransferases to generate complex post-translational modifications of proteins and lipids. The analysis of DolP species by reverse-phase liquid chromatography-mass spectrometry (RPLC-MS) remains a challenge due to their very low abundance and wide range of lipophilicities. Until now, a method for the simultaneous qualitative and quantitative assessment of DolP species from biological membranes has been lacking. Here, we describe a novel approach based on simple sample preparation, rapid and efficient trimethylsilyl diazomethane-dependent phosphate methylation, and RPLC-MS analysis for quantification of DolP species with different isoprene chain lengths. We used this workflow to selectively quantify DolP species from lipid extracts derived of Saccharomyces cerevisiae, HeLa, and human skin fibroblasts from steroid 5-α-reductase 3- congenital disorders of glycosylation (SRD5A3-CDG) patients and healthy controls. Integration of this workflow with global lipidomics analyses will be a powerful tool to expand our understanding of the role of DolPs in pathophysiological alterations of metabolic pathways downstream of HMG-CoA reductase, associated with CDGs, hypercholesterolemia, neurodegeneration, and cancer.
  • Item
    Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe
    (Cambridge : RSC, 2020) Breen, Colum; Pal, Robert; Elsegood, Mark R.J.; Teat, Simon J.; Iza, Felipe; Wende, Kristian; Buckley, Benjamin R.; Butler, Stephen
    Peroxynitrite (ONOO-) is a powerful and short-lived oxidant formed in vivo, which can react with most biomolecules directly. To fully understand the roles of ONOO- in cell biology, improved methods for the selective detection and real-time analysis of ONOO- are needed. We present a water-soluble, luminescent europium(iii) probe for the rapid and sensitive detection of peroxynitrite in human serum, living cells and biological matrices. We have utilised the long luminescence lifetime of the probe to measure ONOO- in a time-resolved manner, effectively avoiding the influence of autofluorescence in biological samples. To demonstrate the utility of the Eu(iii) probe, we monitored the production of ONOO- in different cell lines, following treatment with a cold atmospheric plasma device commonly used in the clinic for skin wound treatment. This journal is © The Royal Society of Chemistry.
  • Item
    A non-cytotoxic resin for micro-stereolithography for cell cultures of HUVECs
    (Basel : MDPI, 2020) Männel, Max J.; Fischer, Carolin; Thiele, Julian
    Three-dimensional (3D) printing of microfluidic devices continuously replaces conventional fabrication methods. A versatile tool for achieving microscopic feature sizes and short process times is micro-stereolithography (µSL). However, common resins for µSL lack biocompatibility and are cytotoxic. This work focuses on developing new photo-curable resins as a basis for µSL fabrication of polymer materials and surfaces for cell culture. Different acrylate-and methacrylate-based compositions are screened for material characteristics including wettability, surface roughness, and swelling behavior. For further understanding, the impact of photo-absorber and photo-initiator on the cytotoxicity of 3D-printed substrates is studied. Cell culture experiments with human umbilical vein endothelial cells (HUVECs) in standard polystyrene vessels are compared to 3D-printed parts made from our library of homemade resins. Among these, after optimizing material composition and post-processing, we identify selected mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) methyl ethyl methacrylate (PEGMEMA) as most suitable to allow for fabricating cell culture platforms that retain both the viability and proliferation of HUVECs. Next, our PEGDA/PEGMEMA resins will be further optimized regarding minimal feature size and cell adhesion to fabricate microscopic (microfluidic) cell culture platforms, e.g., for studying vascularization of HUVECs in vitro. © 2020 by the authors.
  • Item
    A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide
    (London [u.a.] : RSC, 2015) Mendes, Rafael Gregorio; Koch, Britta; Bachmatiuk, Alicja; Ma, Xing; Sanchez, Samuel; Damm, Christine; Schmidt, Oliver G.; Gemming, Thomas; Eckert, Jürgen; Rümmeli, Mark H.
    Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.
  • Item
    Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips
    (Cambridge : RSC, 2019) Richard, Cynthia; Fakhfouri, Armaghan; Colditz, Melanie; Striggow, Friedrich; Kronstein-Wiedemann, Romy; Tonn, Torsten; Medina-Sánchez, Mariana; Schmidt, Oliver G.; Gemming, Thomas; Winkler, Andreas
    The ability to separate specific biological components from cell suspensions is indispensable for liquid biopsies, and for personalized diagnostics and therapy. This paper describes an advanced surface acoustic wave (SAW) based device designed for the enrichment of platelets (PLTs) from a dispersion of PLTs and red blood cells (RBCs) at whole blood concentrations, opening new possibilities for diverse applications involving cell manipulation with high throughput. The device is made of patterned SU-8 photoresist that is lithographically defined on the wafer scale with a new proposed methodology. The blood cells are initially focused and subsequently separated by an acoustic radiation force (ARF) applied through standing SAWs (SSAWs). By means of flow cytometric analysis, the PLT concentration factor was found to be 7.7, and it was proven that the PLTs maintain their initial state. A substantially higher cell throughput and considerably lower applied powers than comparable devices from literature were achieved. In addition, fully coupled 3D numerical simulations based on SAW wave field measurements were carried out to anticipate the coupling of the wave field into the fluid, and to obtain the resulting pressure field. A comparison to the acoustically simpler case of PDMS channel walls is given. The simulated results show an ideal match to the experimental observations and offer the first insights into the acoustic behavior of SU-8 as channel wall material. The proposed device is compatible with current (Lab-on-a-Chip) microfabrication techniques allowing for mass-scale, reproducible chip manufacturing which is crucial to push the technology from lab-based to real-world applications. © The Royal Society of Chemistry.
  • Item
    Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids
    ([S.l.] : American Institute of Physics, 2015) Jablonowski, H.; Bussiahn, R.; Hammer, M.U.; Weltmann, K.-D.; von Woedtke, T.; Reuter, S.
    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•−) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.
  • Item
    Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma
    (Austin, Tex. : Landes Bioscience, 2015) Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian
    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.
  • Item
    Stability of hepatitis E virus at high hydrostatic pressure processing
    (Amsterdam : Elsevier, 2021) Johne, R.; Wolff, A.; Gadicherla, A.K.; Filter, M.; Schlüter, O.
    Hepatitis E virus (HEV) is the causative agent of acute and chronic hepatitis in humans. The zoonotic HEV genotype 3 is the main genotype in Europe. The foodborne transmission via consumption of meat and meat products prepared from infected pigs or wild boars is considered the major transmission route of this genotype. High hydrostatic pressure processing (HPP) is a technique, which can be used for inactivation of pathogens in food. Here, preparations of a cell culture-adapted HEV genotype 3 strain in phosphate-buffered saline (PBS) were subjected to HPP and the remaining infectivity was titrated in cell culture by counting fluorescent foci of replicating virus. A gradual decrease in infectivity was found by application of 100 to 600 MPa for 2 min. At 20 °C, infectivity reduction of 0.5 log10 at 200 MPa and 1 log10 at 400 MPa were observed. Slightly higher infectivity reduction of 1 log10 at 200 MPa and 2 log10 at 400 MPa were found by application of the pressure at 4 °C. At both temperatures, the virus was nearly completely inactivated (>3.5 log10 infectivity decrease) at 600 MPa; however, low amounts of remaining infectious virus were observed in one of three replicates in both cases. Transmission electron microscopy showed disassembled and distorted particles in the preparations treated with 600 MPa. Time-course experiments at 400 MPa showed a continuous decline of infectivity from 30 s to 10 min, leading to a 2 log10 infectivity decrease at 20 °C and to a 2.5 log10 infectivity decrease at 4 °C for a 10 min pressure application each. Predictive models for inactivation of HEV by HPP were generated on the basis of the generated data. The results show that HPP treatment can reduce HEV infectivity, which is mainly dependent on pressure height and duration of the HPP treatment. Compared to other viruses, HEV appears to be relatively stable against HPP and high pressure/long time combinations have to be applied for significant reduction of infectivity.
  • Item
    Redox-triggerable firefly luciferin-bioinspired hydrogels as injectable and cell-encapsulating matrices
    (Cambridge : RSC Publ., 2022) Jin, Minye; Gläser, Alisa; Paez, Julieta I.
    Stimuli-responsive hydrogels are smart materials that respond to variations caused by external stimuli and that are currently exploited for biomedical applications such as biosensing, drug delivery and tissue engineering. The development of stimuli-responsive hydrogels with defined user control is relevant to realize materials with advanced properties. Recently, our group reported firefly luciferin-inspired hydrogel matrices for 3D cell culture. This platform exhibited advantages like rapid gelation rate and tunability of mechanical and biological properties. However, this first molecular design did not allow fine control of the gelation onset, which restricts application as a cell-encapsulating matrice with injectable and processable properties. In this article, we endow the firefly luciferin-inspired hydrogels with redox-triggering capability, to overcome the limitations of the previous system and to widen its application range. We achieve this goal by introducing protected macromers as hydrogel polymeric precursors that can be activated in the presence of a mild reductant, to trigger gel formation in situ with a high degree of control. We demonstrate that the regulation of molecular parameters (e.g., structure of the protecting group, reductant type) and environmental parameters (e.g., pH, temperature) of the deprotection reaction can be exploited to modulate materials properties. This redox-triggerable system enables precise control over gelation onset and kinetics, thus facilitating its utilization as an injectable hydrogel without negatively impacting its cytocompatibility. Our findings expand the current toolkit of chemically-based stimuli-responsive hydrogels.
  • Item
    Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines
    (Columbus, Ohio : American Chemical Society, 2021) Jatczak-Pawlik, Izabela; Gorzkiewicz, Michał; Studzian, Maciej; Zinke, Robin; Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Pułaski, Łukasz
    New therapeutic strategies for personalized medicine need to involve innovative pharmaceutical tools, for example, modular nanoparticles designed for direct immunomodulatory properties. We synthesized mannose-functionalized poly(propyleneimine) glycodendrimers with a novel architecture, where freely accessible mannose moieties are presented on poly(ethylene glycol)-based linkers embedded within an open-shell maltose coating. This design enhanced glycodendrimer bioactivity and led to complex functional effects in myeloid cells, with specific induction of interleukin-8 expression by mannose glycodendrimers detected in HL-60 and THP-1 cells. We concentrated on explaining the molecular mechanism of this phenomenon, which turned out to be different in both investigated cell lines: in HL-60 cells, transcriptional activation via AP-1 binding to the promoter predominated, while in THP-1 cells (which initially expressed less IL-8), induction was mediated mainly by mRNA stabilization. The success of directed immunomodulation, with synthetic design guided by assumptions about mannose-modified dendrimers as exogenous regulators of pro-inflammatory chemokine levels, opens new possibilities for designing bioactive nanoparticles. © 2021 The Authors. Published by American Chemical Society.