Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Plasma-derived reactive species shape a differentiation profile in human monocytes

2019, Freund, Eric, Moritz, Juliane, Stope, Matthias, Seebauer, Christian, Schmidt, Anke, Bekeschus, Sander

Background: Monocyte-derived macrophages are key regulators and producers of reactive oxygen and nitrogen species (ROS/RNS). Pre-clinical and clinical studies suggest that cold physical plasma may be beneficial in the treatment of inflammatory conditions via the release of ROS/RNS. However, it is unknown how plasma treatment affects monocytes and their differentiation profile. Methods: Naïve or phorbol-12-myristate-13-acetate (PMA)-pulsed THP-1 monocytes were exposed to cold physical plasma. The cells were analyzed regarding their metabolic activity as well as flow cytometry (analysis of viability, oxidation, surface marker expression and cytokine secretion) and high content imaging (quantitative analysis of morphology. Results: The plasma treatment affected THP-1 metabolisms, viability, and morphology. Furthermore, a significant modulation CD55, CD69, CD271 surface-expression and increase of inflammatory IL1β, IL6, IL8, and MCP1 secretion was observed upon plasma treatment. Distinct phenotypical changes in THP-1 cells arguing for a differentiation profile were validated in primary monocytes from donor blood. As a functional outcome, plasma-treated monocytes decreased the viability of co-cultured melanoma cells to a greater extent than their non-treated counterparts. Conclusions: Our results suggest plasma-derived ROS/RNS shaped a differentiation profile in human monocytes as evidenced by their increased inflammatory profile (surface marker and cytokines) as well as functional outcome (tumor toxicity). © 2019 by the authors.

Loading...
Thumbnail Image
Item

Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics

2016, Röpcke, Jürgen, Davies, Paul, Hamann, Stephan, Hannemann, Mario, Lang, Norbert, van Helden, Jean-Pierre

The considerably higher power and wider frequency coverage available from quantum cascade lasers (QCLs) in comparison to lead salt diode lasers has led to substantial advances when QCLs are used in pure and applied infrared spectroscopy. Furthermore, they can be used in both pulsed and continuous wave (cw) operation, opening up new possibilities in quantitative time resolved applications in plasmas both in the laboratory and in industry as shown in this article. However, in order to determine absolute concentrations accurately using pulsed QCLs, careful attention has to be paid to features like power saturation phenomena. Hence, we begin with a discussion of the non-linear effects which must be considered when using short or long pulse mode operation. More recently, cw QCLs have been introduced which have the advantage of higher power, better spectral resolution and lower fluctuations in light intensity compared to pulsed devices. They have proved particularly useful in sensing applications in plasmas when very low concentrations have to be monitored. Finally, the use of cw external cavity QCLs (EC-QCLs) for multi species detection is described, using a diagnostics study of a methane/nitrogen plasma as an example. The wide frequency coverage of this type of QCL laser, which is significantly broader than from a distributed feedback QCL (DFB-QCL), is a substantial advantage for multi species detection. Therefore, cw EC-QCLs are state of the art devices and have enormous potential for future plasma diagnostic studies.

Loading...
Thumbnail Image
Item

Redox for Repair: Cold Physical Plasmas and Nrf2 Signaling Promoting Wound Healing

2018-10-19, Schmidt, Anke, Bekeschus, Sander

Chronic wounds and ulcers are major public health threats. Being a substantial burden for patients and health care systems alike, better understanding of wound pathophysiology and new avenues in the therapy of chronic wounds are urgently needed. Cold physical plasmas are particularly effective in promoting wound closure, irrespective of its etiology. These partially ionized gases deliver a therapeutic cocktail of reactive oxygen and nitrogen species safely at body temperature and without genotoxic side effects. This field of plasma medicine reanimates the idea of redox repair in physiological healing. This review compiles previous findings of plasma effects in wound healing. It discusses new links between plasma treatment of cells and tissues, and the perception and intracellular translation of plasma-derived reactive species via redox signaling pathways. Specifically, (i) molecular switches governing redox-mediated tissue response; (ii) the activation of the nuclear E2-related factor (Nrf2) signaling, together with antioxidative and immunomodulatory responses; and (iii) the stabilization of the scaffolding function and actin network in dermal fibroblasts are emphasized in the light of wound healing.

Loading...
Thumbnail Image
Item

Plasma-activation of larger liquid volumes by an inductively-limited discharge for antimicrobial purposes

2019, Schmidt, Michael, Hahn, Veronika, Altrock, Beke, Gerling, Torsten, Gerber, Ioana Cristina, Weltmann, Klaus-Dieter, von Woedtke, Thomas

A new configuration of a discharge chamber and power source for the treatment of up to 1 L of liquid is presented. A leakage transformer, energizing two metal electrodes positioned above the liquid, limits the discharge current inductively by utilizing the weak magnetic coupling between the primary and secondary coils. No additional means to avoid arcing (electric short-circuiting), e.g., dielectric barriers or resistors, are needed. By using this technique, exceeding the breakdown voltage leads to the formation of transient spark discharges, producing non-thermal plasma (NTP). These discharges effected significant changes in the properties of the treated liquids (distilled water, physiological saline solution, and tap water). Considerable concentrations of nitrite and nitrate were detected after the plasma treatment. Furthermore, all tested liquids gained strong antibacterial efficacy which was shown by inactivating suspended Escherichia coli and Staphylococcus aureus. Plasma-treated tap water had the strongest effect, which is shown for the first time. Additionally, the pH-value of tap water did not decrease during the plasma treatment, and its conductivity increased less than for the other tested liquids. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas

2016, Kredl, Jana, Kolb, Juergen F., Schnabel, Uta, Polak, Martin, Weltmann, Klaus-Dieter, Fricke, Katja

Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS) substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS) and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper.

Loading...
Thumbnail Image
Item

Morphology, Optical Properties and Photocatalytic Activity of Photo- and Plasma-Deposited Au and Au/Ag Core/Shell Nanoparticles on Titania Layers

2018-7-6, Müller, Alexander, Peglow, Sandra, Karnahl, Michael, Kruth, Angela, Junge, Henrik, Brüser, Volker, Scheu, Christina

Titania is a promising material for numerous photocatalytic reactions such as water splitting and the degradation of organic compounds (e.g., methanol, phenol). Its catalytic performance can be significantly increased by the addition of co-catalysts. In this study, Au and Au/Ag nanoparticles were deposited onto mesoporous titania thin films using photo-deposition (Au) and magnetron-sputtering (Au and Au/Ag). All samples underwent comprehensive structural characterization by grazing incidence X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Nanoparticle distributions and nanoparticle size distributions were correlated to the deposition methods. Light absorption measurements showed features related to diffuse scattering, the band gap of titania and the local surface plasmon resonance of the noble metal nanoparticles. Further, the photocatalytic activities were measured using methanol as a hole scavenger. All nanoparticle-decorated thin films showed significant performance increases in hydrogen evolution under UV illumination compared to pure titania, with an evolution rate of up to 372 μL H2 h−1 cm−2 representing a promising approximately 12-fold increase compared to pure titania.

Loading...
Thumbnail Image
Item

Activation of murine immune cells upon co-culture with plasma-treated B16F10 melanoma cells

2019, Rödder, Katrin, Moritz, Juliane, Miller, Vandana, Weltmann, Klaus-Dieter, Metelmann, Hans-Robert, Gandhirajan, Rajesh, Bekeschus, Sander

Recent advances in melanoma therapy increased median survival in patients. However, death rates are still high, motivating the need of novel avenues in melanoma treatment. Cold physical plasma expels a cocktail of reactive species that have been suggested for cancer treatment. High species concentrations can be used to exploit apoptotic redox signaling pathways in tumor cells. Moreover, an immune-stimulatory role of plasma treatment, as well as plasma-killed tumor cells, was recently proposed, but studies using primary immune cells are scarce. To this end, we investigated the role of plasma-treated murine B16F10 melanoma cells in modulating murine immune cells' activation and marker profile. Melanoma cells exposed to plasma showed reduced metabolic and migratory activity, and an increased release of danger signals (ATP, CXCL1). This led to an altered cytokine profile with interleukin-1β (IL-1β) and CCL4 being significantly increased in plasma-treated mono- and co-cultures with immune cells. In T cells, plasma-treated melanoma cells induced extracellular signal-regulated Kinase (ERK) phosphorylation and increased CD28 expression, suggesting their activation. In monocytes, CD115 expression was elevated as a marker for activation. In summary, here we provide proof of concept that plasma-killed tumor cells are recognized immunologically, and that plasma exerts stimulating effects on immune cells alone. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

2017-3-29, Schneider, Kai, Lieboldt, Matthias, Liebscher, Marco, Fröhlich, Maik, Hempel, Simone, Butler, Marko, Schröfl, Christof, Mechtcherine, Viktor

Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

Loading...
Thumbnail Image
Item

Hmox1 Upregulation Is a Mutual Marker in Human Tumor Cells Exposed to Physical Plasma-Derived Oxidants

2018-10-27, Bekeschus, Sander, Freund, Eric, Wende, Kristian, Gandhirajan, Rajesh, Schmidt, Anke

Increasing numbers of cancer deaths worldwide demand for new treatment avenues. Cold physical plasma is a partially ionized gas expelling a variety of reactive oxygen and nitrogen species, which can be harnesses therapeutically. Plasmas and plasma-treated liquids have antitumor properties in vitro and in vivo. Yet, global response signatures to plasma treatment have not yet been identified. To this end, we screened eight human cancer cell lines to investigate effects of low-dose, tumor-static plasma-treated medium (PTM) on cellular activity, immune-modulatory properties, and transcriptional levels of 22 redox-related genes. With PTM, a moderate reduction of metabolic activity and modest modulation of chemokine/cytokine pattern and markers of immunogenic cell death was observed. Strikingly, the Nuclear factor (erythroid-derived 2)-like 2 (nrf2) target heme oxygenase 1 (hmox1) was upregulated in all cell lines 4 h post PTM-treatment. nrf2 was not changed, but its baseline expression inversely and significantly correlated with hmox1 expression after exposure to PTM. Besides awarding hmox1 a central role with plasma-derived oxidants, we present a transcriptional redox map of 22 targets and chemokine/cytokine secretion map of 13 targets across eight different human tumor cell lines of four tumor entities at baseline activity that are useful for future studies in this field.

Loading...
Thumbnail Image
Item

Cold argon plasma as adjuvant tumour therapy on progressive head and neck cancer: A preclinical study

2019, Hasse, Sybille, Seebauer, Christian, Wende, Kristian, Schmidt, Anke, Metelmann, Hans-Robert, Woedtke, Thomas von, Bekeschus, Sander

Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP. © 2019 by the authors.