Search Results

Now showing 1 - 10 of 49
  • Item
    Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers
    ([London] : Nature Publishing Group UK, 2017) He, Hongkun; Rahimi, Khosrow; Zhong, Mingjiang; Mourran, Ahmed; Luebke, David R.; Nulwala, Hunaid B.; Möller, Martin; Matyjaszewski, Krzysztof
    Cubosomes are micro- and nanoparticles with a bicontinuous cubic two-phase structure, reported for the self-assembly of low molecular weight surfactants, for example, lipids, but rarely formed by polymers. These objects are characterized by a maximum continuous interface and high interface to volume ratio, which makes them promising candidates for efficient adsorbents and host-guest applications. Here we demonstrate self-assembly to nanoscale cuboidal particles with a bicontinuous cubic structure by amphiphilic poly(ionic liquid) diblock copolymers, poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazolium bis(trifluoromethylsulfonyl)imide, in a mixture of tetrahydrofuran and water under optimized conditions. Structure determining parameters include polymer composition and concentration, temperature, and the variation of the solvent mixture. The formation of the cubosomes can be explained by the hierarchical interactions of the constituent components. The lattice structure of the block copolymers can be transferred to the shape of the particle as it is common for atomic and molecular faceted crystals.
  • Item
    Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines
    ([London] : Nature Publishing Group UK, 2019) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Neumann, Helfried; Spannenberg, Anke; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of earth abundant 3d metal-based catalysts continues to be an important goal of chemical research. In particular, the design of base metal complexes for reductive amination to produce primary amines remains as challenging. Here, we report the combination of cobalt and linear-triphos (bis(2-diphenylphosphinoethyl)phenylphosphine) as the molecularly-defined non-noble metal catalyst for the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds, gaseous ammonia and hydrogen in good to excellent yields. Noteworthy, this cobalt catalyst exhibits high selectivity and as a result the -NH2 moiety is introduced in functionalized and structurally diverse molecules. An inner-sphere mechanism on the basis of the mono-cationic [triphos-CoH]+ complex as active catalyst is proposed and supported with density functional theory computation on the doublet state potential free energy surface and H2 metathesis is found as the rate-determining step.
  • Item
    Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts
    ([London] : Nature Publishing Group UK, 2019) Wu, Lipeng; Annibale, Vincent T.; Jiao, Haijun; Brookfield, Adam; Collison, David; Manners, Ian
    Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for P–P and P–E (E = O, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25 °C and < 5 min). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing P–O, P–S, or P–N bonds.
  • Item
    Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4
    ([London] : Nature Publishing Group UK, 2019) Zvyagin, S.A.; Graf, D.; Sakurai, T.; Kimura, S.; Nojiri, H.; Wosnitza, J.; Ohta, H.; Ono, T.; Tanaka, H.
    Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.
  • Item
    Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines
    ([London] : Nature Publishing Group UK, 2018) Senthamarai, Thirusangumurugan; Murugesan, Kathiravan; Schneidewind, Jacob; Kalevaru, Narayana V.; Baumann, Wolfgang; Neumann, Helfried; Kamer, Paul C. J.; Beller, Matthias; Jagadeesh, Rajenahally V.
    The production of primary benzylic and aliphatic amines, which represent essential feedstocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Furthermore, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed.
  • Item
    Author Correction: Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols
    ([London] : Nature Publishing Group UK, 2018) Brüggemann, Martin; Hayeck, Nathalie; George, Christian
    [no abstract available]
  • Item
    Enhancing laser beam performance by interfering intense laser beamlets
    ([London] : Nature Publishing Group UK, 2019) Morace, A.; Iwata, N.; Sentoku, Y.; Mima, K.; Arikawa, Y.; Yogo, A.; Andreev, A.; Tosaki, S.; Vaisseau, X.; Abe, Y.; Kojima, S.; Sakata, S.; Hata, M.; Lee, S.; Matsuo, K.; Kamitsukasa, N.; Norimatsu, T.; Kawanaka, J.; Tokita, S.; Miyanaga, N.; Shiraga, H.; Sakawa, Y.; Nakai, M.; Nishimura, H.; Azechi, H.; Fujioka, S.; Kodama, R.
    Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.
  • Item
    Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles
    ([London] : Nature Publishing Group UK, 2019) Rupp, Philipp; Burger, Christian; Kling, Nora G; Kübel, Matthias; Mitra, Sambit; Rosenberger, Philipp; Weatherby, Thomas; Saito, Nariyuki; Itatani, Jiro; Alnaser, Ali S.; Raschke, Markus B.; Rühl, Eckart; Schlander, Annika; Gallei, Markus; Seiffert, Lennart; Fennel, Thomas; Bergues, Boris; Kling, Matthias F.
    Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets.
  • Item
    State-of-the-art global models underestimate impacts from climate extremes
    ([London] : Nature Publishing Group UK, 2019) Schewe, Jacob; Gosling, Simon N.; Reyer, Christopher; Zhao, Fang; Ciais, Philippe; Elliott, Joshua; Francois, Louis; Huber, Veronika; Lotze, Heike K.; Seneviratne, Sonia I.; van Vliet, Michelle T. H.; Vautard, Robert; Wada, Yoshihide; Breuer, Lutz; Büchner, Matthias; Carozza, David A.; Chang, Jinfeng; Coll, Marta; Deryng, Delphine; de Wit, Allard; Eddy, Tyler D.; Folberth, Christian; Frieler, Katja; Friend, Andrew D.; Gerten, Dieter; Gudmundsson, Lukas; Hanasaki, Naota; Ito, Akihiko; Khabarov, Nikolay; Kim, Hyungjun; Lawrence, Peter; Morfopoulos, Catherine; Müller, Christoph; Müller Schmied, Hannes; Orth, René; Ostberg, Sebastian; Pokhrel, Yadu; Pugh, Thomas A. M.; Sakurai, Gen; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Steenbeek, Jeroen; Steinkamp, Jörg; Tang, Qiuhong; Tian, Hanqin; Tittensor, Derek P.; Volkholz, Jan; Wang, Xuhui; Warszawski, Lila
    Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  • Item
    Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions
    ([London] : Nature Publishing Group UK, 2019) Scotti, A.; Bochenek, S.; Brugnoni, M.; Fernandez-Rodriguez, M.A.; Schulte, M.F.; Houston, J.E.; Gelissen, A.P.H.; Potemkin, I.I.; Isa, L.; Richtering, W.
    Microgels are solvent-swollen nano- and microparticles that show prevalent colloidal-like behavior despite their polymeric nature. Here we study ultra-low crosslinked poly(N-isopropylacrylamide) microgels (ULC), which can behave like colloids or flexible polymers depending on dimensionality, compression or other external stimuli. Small-angle neutron scattering shows that the structure of the ULC microgels in bulk aqueous solution is characterized by a density profile that decays smoothly from the center to a fuzzy surface. Their phase behavior and rheological properties are those of soft colloids. However, when these microgels are confined at an oil-water interface, their behavior resembles that of flexible macromolecules. Once monolayers of ultra-low crosslinked microgels are compressed, deposited on solid substrate and studied with atomic-force microscopy, a concentration-dependent topography is observed. Depending on the compression, these microgels can behave as flexible polymers, covering the substrate with a uniform film, or as colloidal microgels leading to a monolayer of particles.