Search Results

Now showing 1 - 2 of 2
  • Item
    Impacts of meeting minimum access on critical earth systems amidst the Great Inequality
    (London : Springer Nature, 2022) Rammelt, Crelis F.; Gupta, Joyeeta; Liverman, Diana; Scholtens, Joeri; Ciobanu, Daniel; Abrams, Jesse F.; Bai, Xuemei; Gifford, Lauren; Gordon, Christopher; Hurlbert, Margot; Inoue, Cristina Y. A.; Jacobson, Lisa; Lade, Steven J.; Lenton, Timothy M.; McKay, David I. Armstrong; Nakicenovic, Nebojsa; Okereke, Chukwumerije; Otto, Ilona M.; Pereira, Laura M.; Prodani, Klaudia; Rockström, Johan; Stewart-Koster, Ben; Verburg, Peter H.; Zimm, Caroline
    The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.
  • Item
    Responsibility of major emitters for country-level warming and extreme hot years
    (London : Springer Nature, 2022) Beusch, Lea; Nauels, Alexander; Gudmundsson, Lukas; Gütschow, Johannes; Schleussner, Carl-Friedrich; Seneviratne, Sonia I.
    The contributions of single greenhouse gas emitters to country-level climate change are generally not disentangled, despite their relevance for climate policy and litigation. Here, we quantify the contributions of the five largest emitters (China, US, EU-27, India, and Russia) to projected 2030 country-level warming and extreme hot years with respect to pre-industrial climate using an innovative suite of Earth System Model emulators. We find that under current pledges, their cumulated 1991–2030 emissions are expected to result in extreme hot years every second year by 2030 in twice as many countries (92%) as without their influence (46%). If all world nations shared the same fossil CO2 per capita emissions as projected for the US from 2016–2030, global warming in 2030 would be 0.4 °C higher than under actual current pledges, and 75% of all countries would exceed 2 °C of regional warming instead of 11%. Our results highlight the responsibility of individual emitters in driving regional climate change and provide additional angles for the climate policy discourse.