Search Results

Now showing 1 - 10 of 12
  • Item
    Ultrafast laser inscription of asymmetric integrated waveguide 3 dB couplers for astronomical K-band interferometry at the CHARA array
    (Washington, DC : Soc., 2021) Benoît, Aurélien; Pike, Fraser A.; Sharma, Tarun K.; MacLachlan, David G.; Dinkelaker, Aline N.; Nayak, Abani S.; Madhav, Kalaga; Roth, Martin M.; Labadie, Lucas; Pedretti, Ettore; Brummelaar, Theo A. ten; Scott, Nic; Coudé du Foresto, Vincent; Thomson, Robert R.
    We present the fabrication and characterization of 3 dB asymmetric directional couplers for the astronomical K-band at wavelengths between 2.0 and 2.4 µm. The couplers were fabricated in commercial Infrasil silica glass using an ultrafast laser operating at 1030 nm. After optimizing the fabrication parameters, the insertion losses of straight single-mode waveguides were measured to be ∼1.2±0.5dB across the full K-band. We investigate the development of asymmetric 3 dB directional couplers by varying the coupler interaction lengths and by varying the width of one of the waveguide cores to detune the propagation constants of the coupled modes. In this manner, we demonstrate that ultrafast laser inscription is capable of fabricating asymmetric 3 dB directional couplers for future applications in K-band stellar interferometry. Finally, we demonstrate that our couplers exhibit an interferometric fringe contrast of >90%. This technology paves the path for the development of a two-telescope K-band integrated optic beam combiner for interferometry to replace the existing beam combiner (MONA) in Jouvence of the Fiber Linked Unit for Recombination (JouFLU) at the Center for High Angular Resolution Astronomy (CHARA) telescope array.
  • Item
    Destabilization of super-rotating Taylor-Couette flows by current-free helical magnetic fields
    (London : Cambridge Univ. Press, 2021) Rüdiger, G.; Schultz, M.; Hollerbach, R.
    In an earlier paper we showed that the combination of azimuthal magnetic fields and super-rotation in Taylor–Couette flows of conducting fluids can be unstable against non-axisymmetric perturbations if the magnetic Prandtl number of the fluid is Pm≠1. Here we demonstrate that the addition of a weak axial field component allows axisymmetric perturbation patterns for Pm of order unity depending on the boundary conditions. The axisymmetric modes only occur for magnetic Mach numbers (of the azimuthal field) of order unity, while higher values are necessary for the non-axisymmetric modes. The typical growth time of the instability and the characteristic time scale of the axial migration of the axisymmetric mode are long compared with the rotation period, but short compared with the magnetic diffusion time. The modes travel in the positive or negative z direction along the rotation axis depending on the sign of BϕBz. We also demonstrate that the azimuthal components of flow and field perturbations travel in phase if |Bϕ|≫|Bz|, independent of the form of the rotation law. Within a short-wave approximation for thin gaps it is also shown (in an appendix) that for ideal fluids the considered helical magnetorotational instability only exists for rotation laws with negative shear.
  • Item
    Searching for light in the darkness: Bounds on ALP dark matter with the optical MUSE-faint survey
    (Amsterdam : North-Holland Publ., 2021) Regis, Marco; Taoso, Marco; Vaz, Daniel; Brinchmann, Jarle; Zoutendijk, Sebastiaan L.; Bouché, Nicolas F. Matthias; Steinmetz
    We use MUSE spectroscopic observations of the dwarf spheroidal galaxy Leo T between 470 and 935 nm to search for radiative decays of axion like particles (ALPs). Under the assumption that ALPs constitute the dark matter component of the Leo T halo, we derive bounds on the effective ALP-two-photon coupling. We improve existing limits by more than one order of magnitude in the ALP mass range 2.7-5.3 eV.
  • Item
    Design, simulation and characterization of integrated photonic spectrographs for astronomy: generation-I AWG devices based on canonical layouts
    (Washington, DC : Soc., 2021) Stoll, Andreas; Madhav, Kalaga V.; Roth, Martin M.
    We present an experimental study on our first generation of custom-developed arrayed waveguide gratings (AWG) on a silica platform for spectroscopic applications in near-infrared astronomy. We provide a comprehensive description of the design, numerical simulation and characterization of several AWG devices aimed at spectral resolving powers of 15,000-60,000 in the astronomical H-band. We evaluate the spectral characteristics of the fabricated devices in terms of insertion loss and estimated spectral resolving power and compare the results with numerical simulations. We estimate resolving powers of up to 18,900 from the output channel 3-dB transmission bandwidth. Based on the first characterization results, we select two candidate AWGs for further processing by removal of the output waveguide array and polishing the output facet to optical quality with the goal of integration as the primary diffractive element in a cross-dispersed spectrograph. We further study the imaging properties of the processed AWGs with regards to spectral resolution in direct imaging mode, geometry-related defocus aberration, and polarization sensitivity of the spectral image. We identify phase error control, birefringence control, and aberration suppression as the three key areas of future research and development in the field of high-resolution AWG-based spectroscopy in astronomy.
  • Item
    Bayesian approach for auroral oval reconstruction from ground-based observations
    (Amsterdam [u.a.] : Elsevier Science, 2022) Wagner, D.; Neuhäuser, R.; Arlt, R.
    Naked eye observations of aurorae might be used to obtain information on the large-scale magnetic field of the Earth at historic times. Their abundance may also help bridge gaps in observational time-series of proxies for solar activity such as the sunspot number or cosmogenic isotopes. With information derived from aurora observations like observing site, time of aurora sighting and position on the sky we can reconstruct the auroral oval. Since aurorae are correlated with geomagnetic indices like the Kp index, it is possible to obtain information about the terrestrial magnetic field in the form of the position of the magnetic poles as well as the magnetic disturbance level. Here we present a Bayesian approach to reconstruct the auroral oval from ground-based observations by using two different auroral oval models. With this method we can estimate the position of the magnetic poles in corrected geomagnetic coordinates as well as the Kp index. The method is first validated on synthetic observations before it is applied to four modern geomagnetic storms between 2003 and 2017 where ground-based reports and photographs were used to obtain the necessary information. Based on the four modern geomagnetic storms we have shown, that we are able to reconstruct the pole location with an average accuracy of ≈2° in latitude and ≈11° in longitude. The Kp index can be inferred with a precision of one class. The future goal is to employ the method to historical storms, where we expect somewhat higher uncertainties, since observations may be less accurate or not favorably distributed.
  • Item
    Seeking celestial positronium with an OH-suppressed diffraction-limited spectrograph
    (Washington, DC : The Optical Society, 2021) Robertson, Gordon; Ellis, Simon; Yu, Qingshan; Bland-Hawthorn, Joss; Betters, Christopher; Roth, Martin; Leon-Saval, Sergio
    Celestially, positronium (Ps) has been observed only through gamma-ray emission produced by its annihilation. However, in its triplet state, a Ps atom has a mean lifetime long enough for electronic transitions to occur between quantum states. This produces a recombination spectrum observable in principle at near IR wavelengths, where angular resolution greatly exceeding that of the gamma-ray observations is possible. However, the background in the near IR is dominated by extremely bright atmospheric hydroxyl (OH) emission lines. In this paper, we present the design of a diffraction-limited spectroscopic system using novel photonic components—a photonic lantern, OH fiber Bragg grating filters, and a photonic TIGER 2D pseudo-slit—to observe the Ps Balmer alpha line at 1.3122 µm for the first time, to our knowledge.
  • Item
    First stellar photons for an integrated optics discrete beam combiner at the William Herschel Telescope
    (Washington, DC : The Optical Society, 2021) Nayak, Abani Shankar; Labadie, Lucas; Sharma, Tarun Kumar; Piacentini, Simone; Corrielli, Giacomo; Osellame, Roberto; Gendron, Éric; Buey, Jean-Tristan M.; Chemla, Fanny; Cohen, Mathieu; Bharmal, Nazim A.; Bardou, Lisa F.; Staykov, Lazar; Osborn, James; Morris, Timothy J.; Pedretti, Ettore; Dinkelaker, Aline N.; Madhav, Kalaga V.; Roth, Martin M.
    We present the first on-sky results of a four-telescope integrated optics discrete beam combiner (DBC) tested at the 4.2mWilliamHerschel Telescope. The device consists of a four-input pupil remapper followed by a DBC and a 23-output reformatter. The whole device was written monolithically in a single alumino-borosilicate substrate using ultrafast laser inscription. The device was operated at astronomical H-band (1.6 μm), and a deformable mirror along with a microlens array was used to inject stellar photons into the device. We report the measured visibility amplitudes and closure phases obtained on Vega and Altair that are retrieved using the calibrated transfer matrix of the device. While the coherence function can be reconstructed, the on-sky results show significant dispersion from the expected values. Based on the analysis of comparable simulations, we find that such dispersion is largely caused by the limited signal-to-noise ratio of our observations. This constitutes a first step toward an improved validation of theDBCas a possible beam combination scheme for long-baseline interferometry. © 2021 Optical Society of America.
  • Item
    The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations
    (Basel : MDPI, 2022) Magrini, Laura; Vázquez, Carlos Viscasillas; Casali, Giada; Baratella, Martina; D’Orazi, Valentina; Spina, Lorenzo; Randich, Sofia; Cristallo, Sergio; Vescovi, Diego
    Spectroscopic observations of stars belonging to open clusters, with well-determined ages and distances, are a unique tool for constraining stellar evolution, nucleosynthesis, mixing processes, and, ultimately, Galactic chemical evolution. Abundances of slow (s) process neutron capture elements in stars that retain their initial surface composition open a window into the processes that generated them. In particular, they give us information on their main site of production, i.e., the low-and intermediate-mass Asymptotic Giant Branch (AGB) stars. In the present work, we review some observational results obtained during the last decade that contributed to a better understanding of the AGB phase: the growth of s-process abundances at recent epochs, i.e., in the youngest stellar populations; the different relations between age and [s/Fe] in distinct regions of the disc; and finally the use of s-process abundances combined with those of α elements, [s/α], to estimate stellar ages. We revise some implications that these observations had both on stellar and Galactic evolution, and on our ability to infer stellar ages.
  • Item
    Reflectivity of Venus’s Dayside Disk During the 2020 Observation Campaign: Outcomes and Future Perspectives
    ([Bristol] : IOP Publishing, 2022) Lee, Yeon Joo; García Muñoz, Antonio; Yamazaki, Atsushi; Quémerais, Eric; Mottola, Stefano; Hellmich, Stephan; Granzer, Thomas; Bergond, Gilles; Roth, Martin; Gallego-Cano, Eulalia; Chaufray, Jean-Yves; Robidel, Rozenn; Murakami, Go; Masunaga, Kei; Kaplan, Murat; Erece, Orhan; Hueso, Ricardo; Kabáth, Petr; Špoková, Magdaléna; Sánchez-Lavega, Agustín; Kim, Myung-Jin; Mangano, Valeria; Jessup, Kandis-Lea; Widemann, Thomas; Sugiyama, Ko-ichiro; Watanabe, Shigeto; Yamada, Manabu; Satoh, Takehiko; Nakamura, Masato; Imai, Masataka; Cabrera, Juan
    We performed a unique Venus observation campaign to measure the disk brightness of Venus over a broad range of wavelengths in 2020 August and September. The primary goal of the campaign was to investigate the absorption properties of the unknown absorber in the clouds. The secondary goal was to extract a disk mean SO2 gas abundance, whose absorption spectral feature is entangled with that of the unknown absorber at ultraviolet wavelengths. A total of three spacecraft and six ground-based telescopes participated in this campaign, covering the 52–1700 nm wavelength range. After careful evaluation of the observational data, we focused on the data sets acquired by four facilities. We accomplished our primary goal by analyzing the reflectivity spectrum of the Venus disk over the 283–800 nm wavelengths. Considerable absorption is present in the 350–450 nm range, for which we retrieved the corresponding optical depth of the unknown absorber. The result shows the consistent wavelength dependence of the relative optical depth with that at low latitudes, during the Venus flyby by MESSENGER in 2007, which was expected because the overall disk reflectivity is dominated by low latitudes. Last, we summarize the experience that we obtained during this first campaign, which should enable us to accomplish our second goal in future campaigns.
  • Item
    Searching for Magnetospheres around Herbig Ae/Be Stars
    (Basel : MDPI, 2021) Pogodin, Mikhail; Drake, Natalia; Beskrovnaya, Nina; Pavlovskiy, Sergei; Hubrig, Swetlana; Schöller, Markus; Järvinen, Silva; Kozlova, Olesya; Alekseev, Ilya
    We describe four different approaches for the detection of magnetospheric accretion among Herbig Ae/Be stars with accretion disks. Studies of several unique objects have been carried out. One of the objects is the Herbig Ae star HD 101412 with a comparatively strong magnetic field. The second is the early-type Herbig B6e star HD 259431. The existence of a magnetosphere in these objects was not recognized earlier. In both cases, a periodicity in the variation of some line parameters, originating near the region of the disk/star interaction, has been found. The third object is the young binary system HD 104237, hosting a Herbig Ae star and a T Tauri star. Based on the discovery of periodic variations of equivalent widths of atmospheric lines in the spectrum of the primary, we have concluded that the surface of the star is spotted. Comparing our result with an earlier one, we argue that these spots can be connected with the infall of material from the disk onto the stellar surface through a magnetosphere. The fourth example is the Herbig Ae/Be star HD 37806. Signatures of magnetospheric accretion in this object have been identified using a different method. They were inferred from the short-term variability of the He I λ5876 line profile forming in the region of the disk/star interaction.