Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Scanning electron microscopy preparation of the cellular actin cortex: A quantitative comparison between critical point drying and hexamethyldisilazane drying

2021, Schu, Moritz, Terriac, Emmanuel, Koch, Marcus, Paschke, Stephan, Lautenschläger, Franziska, Flormann, Daniel A.D.

The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.

Loading...
Thumbnail Image
Item

Universality in spectral condensation

2020, Pavithran, Induja, Unni, Vishnu R., Varghese, Alan J., Premraj, D., Sujith, R. I., Vijayan, C., Saha, Abhishek, Marwan, Norbert, Kurths, Jürgen

Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal patterns in complex systems far from equilibrium. During such self-organization, energy distributed in a broadband of frequencies gets condensed into a dominant mode, analogous to a condensation phenomenon. We call this phenomenon spectral condensation and study its occurrence in fluid mechanical, optical and electronic systems. We define a set of spectral measures to quantify this condensation spanning several dynamical systems. Further, we uncover an inverse power law behaviour of spectral measures with the power corresponding to the dominant peak in the power spectrum in all the aforementioned systems.

Loading...
Thumbnail Image
Item

Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results

2017, Elschner, Cindy, Korn, Paula, Hauptstock, Maria, Schulz, Matthias C., Range, Ursula, Jünger, Diana, Scheler, Ulrich

One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of nondestructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume ðbiasHisto MRI: Bonevolume = 2: 40 %, p < 0: 005) and a clearly significant deviation for the remaining defect width ðbiasHisto MRI: Defectwidth = 6: 73 %, p 0: 005Þ: But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally.

Loading...
Thumbnail Image
Item

Interface polarization model for a 2-dimensional electron gas at the BaSnO3/LaInO3 interface

2019, Kim, Young Mo, Markurt, T., Kim, Youjung, Zupancic, M., Shin, Juyeon, Albrecht, M., Char, Kookrin

In order to explain the experimental sheet carrier density n2D at the interface of BaSnO3/LaInO3, we consider a model that is based on the presence of interface polarization in LaInO3 which extends over 2 pseudocubic unit cells from the interface and eventually disappears in the next 2 unit cells. Considering such interface polarization in calculations based on 1D Poisson-Schrödinger equations, we consistently explain the dependence of the sheet carrier density of BaSnO3/LaInO3 heterinterfaces on the thickness of the LaInO3 layer and the La doping of the BaSnO3 layer. Our model is supported by a quantitative analysis of atomic position obtained from high resolution transmission electron microscopy which evidences suppression of the octahedral tilt and a vertical lattice expansion in LaInO3 over 2–3 pseudocubic unit cells at the coherently strained interface.