Search Results

Now showing 1 - 10 of 25
  • Item
    Short-Range Cooperative Slow-down of Water Solvation Dynamics Around SO42--Mg2+ Ion Pairs
    (Washington, DC : American Chemical Society, 2022) Kundu, Achintya; Mamatkulov, Shavkat I.; Brünig, Florian N.; Bonthuis, Douwe Jan; Netz, Roland R.; Elsaesser, Thomas; Fingerhut, Benjamin P.
    The presence of ions affects the structure and dynamics of water on a multitude of length and time scales. In this context, pairs of Mg2+ and SO42- ions in water constitute a prototypical system for which conflicting pictures of hydration geometries and dynamics have been reported. Key issues are the molecular pair and solvation shell geometries, the spatial range of electric interactions, and their impact on solvation dynamics. Here, we introduce asymmetric SO42- stretching vibrations as new and most specific local probes of solvation dynamics that allow to access ion hydration dynamics at the dilute concentration (0.2 M) of a native electrolyte environment. Highly sensitive heterodyne 2D-IR spectroscopy in the fingerprint region of the SO42- ions around 1100 cm-1 reveals a specific slow-down of solvation dynamics for hydrated MgSO4 and for Na2SO4 in the presence of Mg2+ ions, which manifests as a retardation of spectral diffusion compared to aqueous Na2SO4 solutions in the absence of Mg2+ ions. Extensive molecular dynamics and density functional theory QM/MM simulations provide a microscopic view of the observed ultrafast dephasing and hydration dynamics. They suggest a molecular picture where the slow-down of hydration dynamics arises from the structural peculiarities of solvent-shared SO42--Mg2+ ion pairs.
  • Item
    Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz
    (Melville, NY : American Institute of Physics, 2018) Yesudas, Freeda; Mero, Mark; Kneipp, Janina; Heiner, Zsuzsanna
    Broadband vibrational sum-frequency generation (BB-VSFG) spectroscopy has become a well-established surface analytical tool capable of identifying the orientation and structure of molecular layers. A straightforward way to boost the sensitivity of the technique could be to increase the laser repetition rate beyond that of standard BB-VSFG spectrometers, which rely on Ti:sapphire lasers operating at repetition rates of 1-5 kHz. Nevertheless, possible thermally induced artifacts in the vibrational spectra due to higher laser average powers are unexplored. Here, we discuss laser power induced temperature accumulation effects that distort the BB-VSFG spectra of 1,2-diacyl-sn-glycero-3-phosphocholine at an interface between two transparent phases at repetition rates of 5, 10, 50, and 100 kHz at constant pulse energy. No heat-induced distortions were found in the spectra, suggesting that the increase in the laser repetition rate provides a feasible route to an improved signal-to-noise ratio or shorter data acquisition times in BB-VSFG spectroscopy for thin films on transparent substrates. The results have implications for future BB-VSFG spectrometers pushing the detection limit for molecular layers with low surface coverage.
  • Item
    The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Deinhart, Victor; Kern, Lisa-Marie; Kirchhof, Jan N.; Juergensen, Sabrina; Sturm, Joris; Krauss, Enno; Feichtner, Thorsten; Kovalchuk, Sviatoslav; Schneider, Michael; Engel, Dieter; Pfau, Bastian; Hecht, Bert; Bolotin, Kirill I.; Reich, Stephanie; Höflich, Katja
    Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
  • Item
    Transient spin injection efficiencies at ferromagnet/metal interfaces
    (Weinheim : Wiley-VCH, 2022-10-19) Elliott, Peter; Eschenlohr, Andrea; Chen, Jinghao; Shallcross, Sam; Bovensiepen, Uwe; Dewhurst, John Kay; Sharma, Sangeeta
    Spin injection across interfaces driven by ultrashort optical pulses on femtosecond timescales constitutes a new way to design spintronics applications. Targeted utilization of this phenomenon requires knowledge of the efficiency of non-equilibrium spin injection. From a quantitative comparison of ab initio time-dependent density functional theory and interface-sensitive, time-resolved non-linear optical experiment, the spin injection efficiency (SIE) at the Co/Cu(001) interface is determined, and its microscopic origin, i.e., the influence of spin-orbit coupling and the interface electronic structure, is discussed. Moreover, we theoretically predict that the SIE at ferromagnetic–metal interfaces can be optimized through laser pulse and materials parameters, namely the fluence, pulse duration, and substrate material.
  • Item
    Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes
    (Weinheim : Wiley-VCH, 2022-10-31) Joseph, Anton; Wagner, Anna M.; Garay-Sarmiento, Manuela; Aleksanyan, Mina; Haraszti, Tamás; Söder, Dominik; Georgiev, Vasil N.; Dimova, Rumiana; Percec, Virgil; Rodriguez-Emmenegger, Cesar
    Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron is introduced. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond.
  • Item
    Infrared and NMR Spectroscopic Fingerprints of the Asymmetric H7 + O3 Complex in Solution
    (Weinheim : Wiley-VCH Verl., 2021) Kozari, Eve; Sigalov, Mark; Pines, Dina; Fingerhut, Benjamin P.; Pines, Ehud
    Infrared (IR) absorption in the 1000-3700 cm-1 range and 1 H NMR spectroscopy reveal the existence of an asymmetric protonated water trimer, H7 + O3, in acetonitrile. The core H7 + O3 motif persists in larger protonated water clusters in acetonitrile up to at least 8 water molecules. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations reveal irreversible proton transport promoted by propagating the asymmetric H7 + O3 structure in solution. The QM/MM calculations allow for the successful simulation of the measured IR absorption spectra of H7 + O3 in the OH stretch region, which reaffirms the assignment of the H7 + O3 spectra to a hybrid-complex structure: a protonated water dimer strongly hydrogen-bonded to a third water molecule with the proton exchanging between the two possible shared-proton Zundel-like centers. The H7 + O3 structure lends itself to promoting irreversible proton transport in presence of even one additional water molecule. We demonstrate how continuously evolving H7 + O3 structures may support proton transport within larger water solvates.
  • Item
    Properties of LiGa0.5In0.5Se2: A Quaternary Chalcogenide Crystal for Nonlinear Optical Applications in the Mid-IR
    (Basel : MDPI, 2016) Isaenko, Ludmila; Yelisseyev, Alexander; Lobanov, Sergei; Vedenyapin, Vitaliy; Krinitsyn, Pavel; Petrov, Valentin
    LiGaSe2 (LGSe) and LiInSe2 (LISe) are wide band-gap nonlinear crystals transparent in the mid-IR spectral range. LiGa0.5In0.5Se2 (LGISe) is a new mixed crystal, a solid solution in the system LGSe–LISe, which exhibits the same orthorhombic structure (mm2) as the parent compounds in the same time being more technological with regard to the growth process. In comparison with LGSe and LISe its homogeneity range is broader in the phase diagram. About 10% of the Li ions in LGISe occupy octahedral positions (octapores) with coordination number of 3. The band-gap of LGISe is estimated to be 2.94 eV at room temperature and 3.04 eV at 80 K. The transparency at the 0-level extends from 0.47 to 13 µm. LGISe crystals exhibit luminescence in broad bands centered near 1.7 and 1.25 eV which is excited most effectively by band-to-band transition. From the measured principal refractive indices and the fitted Sellmeier equations second-harmonic generation from 1.75 to 11.8 μm (fundamental wavelength) is predicted. The nonlinear coefficients of LGISe have values between those of LGSe and LISe. 6LGISe crystals are considered promising also for detection of thermal neutrons.
  • Item
    Water Dynamics in the Hydration Shells of Biomolecules
    (Washington, DC : ACS Publ., 2017) Laage, Damien; Elsaesser, Thomas; Hynes, James T.
    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
  • Item
    Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry
    (Cambridge : RSC, 2022) Yildiz, Deniz; Göstl, Robert; Herrmann, Andreas
    Active pharmaceutical ingredients are the most consequential and widely employed treatment in medicine although they suffer from many systematic limitations, particularly off-target activity and toxicity. To mitigate these effects, stimuli-responsive controlled delivery and release strategies for drugs are being developed. Fueled by the field of polymer mechanochemistry, recently new molecular technologies enabled the emergence of force as an unprecedented stimulus for this purpose by using ultrasound. In this research area, termed sonopharmacology, mechanophores bearing drug molecules are incorporated within biocompatible macromolecular scaffolds as preprogrammed, latent moieties. This review presents the novelties in controlling drug activation, monitoring, and release by ultrasound, while discussing the limitations and challenges for future developments.
  • Item
    Ultrafast phosphate hydration dynamics in bulk H2O
    (Melville, NY : American Institute of Physics, 2015) Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas
    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4− ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (𝜈𝑆(PO−2)) and asymmetric (𝜈𝐴𝑆(PO−2)) PO−2 stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the 𝜈𝑆(PO−2) and 𝜈𝐴𝑆(PO−2) transition frequencies with larger frequency excursions for 𝜈𝐴𝑆(PO−2). The calculated frequency-time correlation function is in good agreement with the experiment. The 𝜈(PO−2) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4−/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.