Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms

2017, Huang, Huiying, Trotta, Rinaldo, Huo, Yongheng, Lettner, Thomas, Wildmann, Johannes S., Martín-Sánchez, Javier, Huber, Daniel, Reindl, Marcus, Zhang, Jiaxiang, Zallo, Eugenio, Schmidt, Oliver G., Rastelli, Armando

We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm 87Rb vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step toward the realization of hybrid-quantum systems for future quantum networks.

Loading...
Thumbnail Image
Item

Asymmetric g Tensor in Low-Symmetry Two-Dimensional Hole Systems

2018-6-18, Gradl, C., Winkler, R., Kempf, M., Holler, J., Schuh, D., Bougeard, D., Hernández-Mínguez, A., Biermann, K., Santos, P.V., Schüller, C., Korn, T.

The complex structure of the valence band in many semiconductors leads to multifaceted and unusual properties for spin-3/2 hole systems compared to common spin-1/2 electron systems. In particular, two-dimensional hole systems show a highly anisotropic Zeeman interaction. We have investigated this anisotropy in GaAs/AlAs quantum well structures both experimentally and theoretically. By performing time-resolved Kerr rotation measurements, we found a nondiagonal tensor g that manifests itself in unusual precessional motion, as well as distinct dependencies of hole-spin dynamics on the direction of the magnetic field B. We quantify the individual components of the tensor g for [113]-, [111]-, and [110]-grown samples. We complement the experiments by a comprehensive theoretical study of Zeeman coupling in in-plane and out-of-plane fields B. To this end, we develop a detailed multiband theory for the tensor g. Using perturbation theory, we derive transparent analytical expressions for the components of the tensor g that we complement with accurate numerical calculations based on our theoretical framework. We obtain very good agreement between experiment and theory. Our study demonstrates that the tensor g is neither symmetric nor antisymmetric. Opposite off-diagonal components can differ in size by up to an order of magnitude. The tensor g encodes not only the Zeeman energy splitting but also the direction of the axis about which the spins precess in the external field B. In general, this axis is not aligned with B. Hence our study extends the general concept of optical orientation to the regime of nontrivial Zeeman coupling.

Loading...
Thumbnail Image
Item

Growth of crystalline phase change materials by physical deposition methods

2017, Boschker, Jos E., Calarco, Raffaella

Phase change materials are a technologically important materials class and are used for data storage in rewritable DVDs and in phase change random access memory. Furthermore, new applications for phase change materials are emerging. Phase change materials with a high structural quality, such as offered by epitaxial films, are needed in order to study the fundamental properties of phase change materials and to improve our understanding of this materials class. Here, we review the progress made in the growth of crystalline phase change materials by physical methods, such as molecular beam epitaxy, sputtering, and pulsed laser deposition. First, we discuss the difference and similarities between these physical deposition methods and the crystal structures of Ge2Sb2Te5, the prototype phase change material. Next, we focus on the growth of epitiaxial GST films on (0 0 1)- and (1 1 1)-oriented substrates, leading to the conclusion that (1 1 1)-oriented substrates are preferred for the growth of phase change materials. Finally, the growth of GeTe/Sb2Te3 superlattices on amorphous and single crystalline substrates is discussed.

Loading...
Thumbnail Image
Item

Selective area growth of AlGaN nanopyramid arrays on graphene by metal-organic vapor phase epitaxy

2018, Munshi, A. Mazid, Kim, Dong-Chul, Heimdal, Carl Philip, Heilmann, Martin, Christiansen, Silke H., Vullum, Per Erik, van Helvoort, Antonius T. J., Weman, Helge

Wide-bandgap group III-nitride semiconductors are of special interest for applications in ultraviolet light emitting diodes, photodetectors, and lasers. However, epitaxial growth of high-quality III-nitride semiconductors on conventional single-crystalline substrates is challenging due to the lattice mismatch and differences in the thermal expansion coefficients. Recently, it has been shown that graphene, a two-dimensional material, can be used as a substrate for growing high-quality III-V semiconductors via quasi-van der Waals epitaxy and overcome the named challenges. Here, we report selective area growth of AlGaN nanopyramids on hole mask patterned single-layer graphene using metal-organic vapor phase epitaxy. The nanopyramid bases have a hexagonal shape with a very high nucleation yield. After subsequent AlGaN/GaN/AlGaN overgrowth on the six {10 (1) over bar1} semi-polar side facets of the nanopyramids, intense room-temperature cathodoluminescence emission is observed at 365 nm with whispering gallery-like modes. This work opens up a route for achieving III-nitride opto-electronic devices on graphene substrates in the ultraviolet region for future applications.

Loading...
Thumbnail Image
Item

Surface acoustic wave modulation of single photon emission from GaN/InGaN nanowire quantum dots

2018, Lazić, S., Chernysheva, E., Hernández-Mínguez, A., Santos, P.V., van der Meulen, H.P.

On-chip quantum information processing requires controllable quantum light sources that can be operated on-demand at high-speeds and with the possibility of in-situ control of the photon emission wavelength and its optical polarization properties. Here, we report on the dynamic control of the optical emission from core-shell GaN/InGaN nanowire (NW) heterostructures using radio frequency surface acoustic waves (SAWs). The SAWs are excited on the surface of a piezoelectric lithium niobate crystal equipped with a SAW delay line onto which the NWs were mechanically transferred. Luminescent quantum dot (QD)-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell were identified using stroboscopic micro-photoluminescence (micro-PL) spectroscopy. They exhibit narrow and almost fully linearly polarized emission lines in the micro-PL spectra and a pronounced anti-bunching signature of single photon emission in the photon correlation experiments. When the nanowire is perturbed by the propagating SAW, the embedded QD is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling, giving rise to a spectral fine-tuning within a ~1.5 meV bandwidth at the acoustic frequency of ~330 MHz. This outcome can be further combined with spectral detection filtering for temporal control of the emitted photons. The effect of the SAW piezoelectric field on the QD charge population and on the optical polarization degree is also observed. The advantage of the acousto-optoelectric over other control schemes is that it allows in-situ manipulation of the optical emission properties over a wide frequency range (up to GHz frequencies).

Loading...
Thumbnail Image
Item

Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

2018, Weiß, Matthias, Hörner, Andreas L., Zallo, Eugenio, Atkinson, Paola, Rastelli, Armando, Schmidt, Oliver G., Wixforth, Achim, Krenner, Hubert J.

Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p, a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.