Search Results

Now showing 1 - 10 of 581
Loading...
Thumbnail Image
Item

Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement

2018, Fuglestvedt, J., Rogelj, J., Millar, R. J., Allen, M., Boucher, O., Cain, M., Forster, P. M., Kriegler, E., Shindell, D.

The main goal of the Paris Agreement as stated in Article 2 is ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C’. Article 4 points to this long-term goal and the need to achieve ‘balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on ‘greenhouse gas balance’ is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO2-equivalent emissions conventionally calculated using GWP100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO2) results in global temperatures remaining approximately constant once net-zero CO2-equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement.

Loading...
Thumbnail Image
Item

Mini-Workshop: Women in Mathematics: Historical and Modern Perspectives

2017, Oswald, Nicola, Tobies, Renate

The aim of the workshop is to build a bridge between research on the situation of women in mathematics at the beginning of coeducative studies and the current circumstances in academia. The issue of women in mathematics has been a recent political and social hot topic in the mathematical community. As thematic foci we place a double comparison: besides shedding light on differences and similarities in several European countries, we complete this investigation by comparing the developments of women studies from the beginnings. This shall lead to new results on tradition and suggest improvements on the present situation.

Loading...
Thumbnail Image
Item

Algebraic K-theory and Motivic Cohomology

2013, Huber-Klawitter, Annette, Jannsen, Uwe, Levine, Marc

Algebraic K-theory and motivic cohomology are strongly related tools providing a systematic way of producing invariants for algebraic or geometric structures. The definition and methods are taken from algebraic topology, but there have been particularly fruitful applications to problems of algebraic geometry, number theory or quadratic forms. 19 one-hour talks presented a wide range of latest results on the theory and its applications.

Loading...
Thumbnail Image
Item

Mini-Workshop: Shearlets

2010, Labate, Demetrio

Over the last 20 years, multiscale methods and wavelets have revolutionized the field of applied mathematics by providing an efficient means for encoding isotropic phenomena. Directional multiscale systems, particularly shearlets, are now having the same dramatic impact on the encoding of multivariate signals. Since its introduction about five years ago, the theory of shearlets has rapidly developed and gained wide recognition as the superior way of achieving a truly unified treatment in both the continuum and digital setting. By now, shearlet analysis has reached maturity as a research field, with deep mathematical results, efficient numerical methods, and a variety of high-impact applications. The main goal of the Mini-Workshop Shearlets was to gather the world’s experts in this field in order to foster closer interaction, attack challenging open problems, and identify future research directions.

Loading...
Thumbnail Image
Item

Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C

2018, Seneviratne, Sonia I., Wartenburger, Richard, Guillod, Benoit P., Hirsch, Annette L., Vogel, Martha M., Brovkin, Victor, van Vuuren, Detlef P., Schaller, Nathalie, Boysen, Lena, Calvin, Katherine V., Doelman, Jonathan, Greve, Peter, Havlik, Petr, Humpenöder, Florian, Krisztin, Tamas, Mitchell, Daniel, Popp, Alexander, Riahi, Keywan, Rogelj, Joeri, Schleussner, Carl-Friedrich, Sillmann, Jana, Stehfest, Elke

This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.

Loading...
Thumbnail Image
Item

Advanced Computational Engineering

2012, Carstensen, Carsten, Schröder, Jörg, Wriggers, Peter

The finite element method is the established simulation tool for the numerical solution of partial differential equations in many engineering problems with many mathematical developments such as mixed finite element methods (FEMs) and other nonstandard FEMs like least-squares, nonconforming, and discontinuous Galerkin (dG) FEMs. Various aspects on this plus related topics ranging from order-reduction methods to isogeometric analysis has been discussed amongst the pariticpants form mathematics and engineering for a large range of applications.

Loading...
Thumbnail Image
Item

Actions and Invariants of Residually Finite Groups: Asymptotic Methods

2010, Gaboriau, Damien, Grunewald, Fritz

The workshop brought together experts in finite group theory, L2-cohomology, measured group theory, the theory of lattices in Lie groups, probability and topology. The common object of interest was residually finite groups, that each field investigates from a different angle.

Loading...
Thumbnail Image
Item

Spectral Theory of Infinite Quantum Graphs

2018, Exner, Pavel, Kostenko, Aleksey, Malamud, Mark, Neidhardt, Hagen

We investigate quantum graphs with infinitely many vertices and edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph and the corresponding properties of a certain weighted discrete Laplacian on the underlying discrete graph. Using this connection together with spectral theory of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new results on spectral properties of quantum graphs. Namely, we prove several self-adjointness results including a Gaffney-type theorem. We investigate the problem of lower semiboundedness, prove several spectral estimates (bounds for the bottom of spectra and essential spectra of quantum graphs, CLR-type estimates) and study spectral types.

Loading...
Thumbnail Image
Item

Algebraic Statistics

2017, Kahle, Thomas, Sturmfels, Bernd, Uhler, Caroline

Algebraic Statistics is concerned with the interplay of techniques from commutative algebra, combinatorics, (real) algebraic geometry, and related fields with problems arising in statistics and data science. This workshop was the first at Oberwolfach dedicated to this emerging subject area. The participants highlighted recent achievements in this field, explored exciting new applications, and mapped out future directions for research.

Loading...
Thumbnail Image
Item

Algebraische Zahlentheorie

2018, Sujatha, Ramdorai, Urban, Eric, Venjakob, Otmar

The origins of Algebraic Number Theory can be traced to over two centuries ago, wherein algebraic techniques are used to glean information about integers and rational numbers. It continues to be at the forefront of