Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Integrated Energy System Optimization Based on Standardized Matrix Modeling Method

2018-11-23, Li, Jingchao, Ying, Yulong, Lou, Xingdan, Fan, Juanjuan, Chen, Yunlongyu, Bi, Dongyuan

Aiming at the optimization of an integrated energy system, a standardized matrix modeling method and optimization method for an integrated energy system is proposed. Firstly, from the perspective of system engineering, the energy flow between energy conversion devices is used as a state variable to deal with nonlinear problems caused by the introduction of scheduling factors, and a standardized matrix model of the integrated energy system is constructed. Secondly, based on the proposed model, the structural optimization (i.e., energy flow structure and equipment type), design optimization (i.e., equipment capacity and quantity), and operation optimization for the integrated energy system can be achieved. The simulation case studies have shown that the proposed integrated energy system standardized matrix modeling method and optimization method are both simple and efficient, and can be effectively used to decide the system components and their interconnections, and the technical characteristics and daily operating strategy of the system components.

Loading...
Thumbnail Image
Item

Microparticle Manipulation and Imaging through a Self-Calibrated Liquid Crystal on Silicon Display

2018-11-20, Zhang, Haolin, Lizana, Angel, Van Eeckhout, Albert, Turpin, Alex, Ramirez, Claudio, Iemmi, Claudio, Campos, Juan

We present in this paper a revision of three different methods we conceived in the framework of liquid crystal on silicon (LCoS) display optimization and application. We preliminarily demonstrate an LCoS self-calibration technique, from which we can perform a complete LCoS characterization. In particular, two important characteristics of LCoS displays are retrieved by using self-addressed digital holograms. On the one hand, we determine its phase-voltage curve by using the interference pattern generated by a digital two-sectorial split-lens configuration. On the other hand, the LCoS surface profile is also determined by using a self-addressed dynamic micro-lens array pattern. Second, the implementation of microparticle manipulation through optical traps created by an LCoS display is demonstrated. Finally, an LCoS display based inline (IL) holographic imaging system is described. By using the LCoS display to implement a double-sideband filter configuration, this inline architecture demonstrates the advantage of obtaining dynamic holographic imaging of microparticles independently of their spatial positions by avoiding the non-desired conjugate images.

Loading...
Thumbnail Image
Item

A Brief Review of New Fiber Microsphere Geometries

2018-7-11, Delgado Gomes, André, Silva Monteiro, Catarina, Silveira, Beatriz, Frazão, Orlando

A brief review of new fiber microsphere geometries is presented. Simple microspheres working as Fabry–Perot cavities are interrogated in reflection and in transmission. Two microspheres were also spliced together, and subjected to different physical parameters. These structures are an alternative solution for load measurement and, when read in transmission, it is also possible to apply strain. Moreover, the structure is capable of being used under extreme ambient temperatures up to 900 °C. Random signal in cleaved microspheres was demonstrated with the possibility of using it for random laser or sensing applications. All this work was developed at the Centre for Applied Photonics, INESC TEC.