Search Results

Now showing 1 - 6 of 6
  • Item
    Basic material and technology investigations for material bonded hybrids by continuous hybrid profile fabrication
    (London [u.a.] : Institute of Physics, 2021) Schubert, K.; Gedan-Smolka, M.; Marschner, A.; Rietzschel, T.; Uhlig, K.; Löpitz, D.; Wagner, D.; Knobloch, M.; Karjust, Krist; Otto, Tauno; Kübarsepp, Jakob; Hussainova, Irina
    The development of multi-material hybrids by injection molding has been studied very intensively at the IPF in the past. For that, a material bonding between the different substrates was achieved by using a newly developed two-step curing powder coating material as latent reactive adhesive. The aim of the project “Hybrid Pultrusion” was to perform a novel approach for the fabrication of material bonded metal-plastic joints (profiles) in a modified pultrusion process. Therefore, powder pre-coated steel coil is combined with a glass-fiber reinforced epoxy resin matrix. For initial basic studies, the impregnated fiber material has been applied on the pre-coated steel sheets using the Resin Transfer Molding process (RTM-process). It was proved via lap shear tests, that this procedure resulted in very high adhesive strengths up to 35 MPa resulting from the formation of a covalent matrix-steel bonding as well. In addition, the failure mechanism was subsequently studied. Furthermore, by adapting the successful material combination to the pultrusion process it was demonstrated that material bonded hybrids can be achieved even under these continuous processing conditions.
  • Item
    Hollow square core fiber sensor for physical parameters measurement
    (Bristol : IOP Publ., 2022) Pereira, Diana; Bierlich, Jörg; Kobelke, Jens; Ferreira, Marta S.
    The measurement of physical parameters is important in many current applications, since they often rely on these measurands to operate with the due quality and the necessary safety. In this work, a simple and robust optical fiber sensor based on an antiresonant hollow square core fiber (HSCF) is proposed to measure simultaneously temperature, strain, and curvature. The proposed sensor was designed in a transmission configuration where a segment of HSCF, with a 10 mm length, was spliced between two single mode fibers. In this sensor, a cladding modal interference (CMI) and a Mach-Zehnder interference (MZI) are enhanced along with the antiresonance (AR) guidance. All the present mechanisms exhibit different responses towards the physical parameters. For the temperature, sensitivities of 32.8 pm/°C, 18.9 pm/°C, and 15.7 pm/°C were respectively attained for the MZI, AR, and CMI. As for the strain, sensitivities of 0.45 pm/μϵ, -0.93 pm/μϵ, and -2.72 pm/μϵ were acquired for the MZI, AR and CMI respectively. Meanwhile, for the curvature measurements, two regions of analysis were considered. In the first region (0 m-1 - 0.7 m-1) sensitivities of 0.033 nm/m-1, -0.27 nm/m-1, and -2.21 nm/m-1 were achieved, whilst for the second region (0.7 m-1 - 1.5 m-1) sensitivities of 0.067 nm/m-1, -0.63 nm/m-1, and -0.49 nm/m-1 were acquired for the MZI, AR and CMI, respectively.
  • Item
    Capillary based hybrid fiber sensor in a balloon-like shape for simultaneous measurement of displacement and temperature
    (Bristol : IOP Publ., 2022) Santos, João P.; Bierlich, Jörg; Kobelke, Jens; Ferreira, Marta S.
    In this work, a hybrid sensor based on a silica capillary in a balloon-like shape for simultaneous measurement of displacement and temperature is proposed for the first time, to the best of our knowledge. The sensor is fabricated by splicing a segment of a hollow core fiber between two single mode fibers (SMF) and by bending the fiber in a balloon shape with the capillary at the top-center position. In a transmission scheme, the SMF-capillary-SMF configuration excites an antiresonant (AR) guidance and the balloon shape enhances a Mach-Zehnder interferometer (MZI). The different responses of the interferometers to external displacement and temperature variations are conducive to a hybrid application of the sensor for simultaneous measurement of these parameters. Experimental results show that, for a capillary length of 1.2 cm and a balloon length of 4 cm, AR is insensitive to displacement and its sensitivity to temperature is 14.3 pm/°C, while the MZI has a sensitivity to displacement of 1.68 nm/mm and twice the sensitivity of AR to temperature, of 28.6 pm/°C. The proposed fiber sensor consists of only one sensing element in one configuration exciting two interferometers at the same time, which makes it of simple fabrication as well as low cost.
  • Item
    Beamline-implemented stretching devices for in situ X-ray scattering experiments
    (Bristol : IOP Publ., 2022) Euchler, E.; Sambale, A.K.; Schneider, K.; Uhlig, K.; Boldt, R.; Stommel, M.; Stribeck, A.; Schwartzkopf, M.; Rothkirch, A.; Roth, S.V.
    Two recently developed experimental devices for investigating soft matter deformation are presented. Both devices exploit the capabilities of a modern synchrotron beamline to enable advanced and highly precise materials-science experiments in which X-ray scattering is registered. The devices can be operated both in monotonic as well as cyclic mode and are implemented into a beamline at DESY, Hamburg (Germany). Hence, relevant experimental parameters, such as displacement, force and temperature, are recorded synchronously with the individual X-ray scattering patterns. In addition, spatial variation of materials deformation can be monitored and recorded with optical microscopy. This unique sample environment enables in situ X-ray experiments in transmission, i.e. small- or wide-angle X-ray scattering (SAXS or WAXS), and in grazing-incidence geometry, i.e. grazing-incidence (GI-) SAXS or WAXS. One device with stepper motors is designed for studies of slow, (quasi-) static deformation and the other one with pneumatic actuators can be used for fast, impact deformation. Both devices are available to external beamline users, too.
  • Item
    Chemical Bonded PA66-PTFE-Oil Composites as Novel Tribologically Effective Materials: Part 2
    (London [u.a.] : Institute of Physics, 2021) Nguyen, Thanh-Duong; Kamga, Lionel Simo; Gedan-Smolka, Michaela; Sauer, Bernd; Emrich, Stefan; Kopnarski, Michael; Voit, Brigitte; Karjust, Krist; Otto, Tauno; Kübarsepp, Jakob; Hussainova, Irina
    Polytetrafluoroethylene (PTFE) exhibits excellent non-stick properties and a very low coefficient of friction under tribological stress, but it is incompatible with almost all other polymers. In the first part of this study we presented the generation of the novel tribological material based on unsaturated oil, radiation-modified PTFE (MP1100) and Polyamide 66 (PA66). To get a better understanding of the chemical properties and chemical composition of the compounds, the PA66-MP1100-oil-cb (chemical bonded) compounds were examined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). In this part, the mechanical properties of the compounds are compared with plain PA66 and PA66-MP1100-cb. The tribological investigation was carried out using the Block-on-Ring tribometer. It was found that the mechanical properties of PA66-MP1100-oil-cb with 20 wt.% MP1100-oil-cb only show slight differences compared to PA66, but the tribological properties of the compounds have been significantly improved through chemical coupling between the three components. Finally, the amount of the compound that was deposited on the surface of the steel disc counterpart was analyzed after the tribological testing.
  • Item
    Secondary electron yield engineering of copper surfaces by 532 nm ultrashort laser pulses
    (Amsterdam [u.a.] : Elsevier, 2022) Lorenz, Pierre; Bez, Elena; Himmerlich, Marcel; Ehrhardt, Martin; Taborelli, Mauro; Zimmer, Klaus
    Nanostructured surfaces exhibit outstanding properties and enable manifold industrial applications. In this study the laser surface processing of polycrystalline, flat copper surfaces by 532 nm picosecond laser irradiation for secondary electron yield (SEY) reduction is reported. The laser beam was scanned in parallel lines across the sample surface in order to modify large surface areas. Morphology and SEY are characterized in dependence of the process parameters to derive correlations and mechanisms of the laser-based SEY engineering process. The nano- and microstructure morphology of the laser-modified surface was characterized by scanning electron microscopy and the secondary electron yield was measured. In general, an SEY reduction with increasing accumulated laser fluence was found. In particular, at low scanning speed (1 mm/s - 10 mm/s) and “high” laser power (~ 1 W) compact nanostructures with a very low SEY maximum of 0.7 are formed.