Search Results

Now showing 1 - 10 of 25
Loading...
Thumbnail Image
Item

Optical Spectrometry to Determine Nutrient Concentrations and other Physicochemical Parameters in Liquid Organic Manures: A Review

2022, Horf, Michael, Vogel, Sebastian, Drücker, Harm, Gebbers, Robin, Olfs, Hans-Werner

Nutrient concentrations in livestock manures and biogas digestates show a huge variability due to disparities in animal husbandry systems concerning animal species, feed composition, etc. Therefore, a nutrient estimation based on recommendation tables is not reliable when the exact chemical composition is needed. The alternative, to analyse representative fertilizer samples in a standard laboratory, is too time-and cost-intensive to be an accepted routine method for farmers. However, precise knowledge about the actual nutrient concentrations in liquid organic fertilizers is a prerequisite to ensure optimal nutrient supply for growing crops and on the other hand to avoid environmental problems caused by overfertilization. Therefore, spectrometric methods receive increasing attention as fast and low-cost alternatives. This review summarizes the present state of research based on optical spectrometry used at laboratory and field scale for predicting several parameters of liquid organic manures. It emphasizes three categories: (1) physicochemical parameters, e.g., dry matter, pH, and electrical conductivity; (2) main plant nutrients, i.e., total nitrogen, ammonium nitrogen, phosphorus, potassium, magnesium, calcium, and sulfur; and (3) micronutrients, i.e., manganese, iron, copper, and zinc. Furthermore, the commonly used sample preparation techniques, spectrometer types, measuring modes, and chemometric methods are presented. The primarily promising scientific results of the last 30 years contributed to the fact that near-infrared spectrometry (NIRS) was established in commercial laboratories as an alternative method to wet chemical standard methods. Furthermore, companies developed technical setups using NIRS for on-line applications of liquid organic manures. Thus, NIRS seems to have evolved to a competitive measurement procedure, although parts of this technique still need to be improved to ensure sufficient accuracy, especially in quality management.

Loading...
Thumbnail Image
Item

Surface Plasmon Resonance Sensitivity Enhancement Based on Protonated Polyaniline Films Doped by Aluminum Nitrate

2022, Al-Bataineh, Qais M., Shpacovitch, Victoria, Sadiq, Diyar, Telfah, Ahmad, Hergenröder, Roland

Complex composite films based on polyaniline (PANI) doped hydrochloric acid (HCl) incorporated with aluminum nitrate (Al(NO3)3) on Au-layer were designed and synthesized as a surface plasmon resonance (SPR) sensing device. The physicochemical properties of (PANI-HCl)/Al(NO3)3 complex composite films were studied for various Al(NO3)3 concentrations (0, 2, 4, 8, 16, and 32 wt.%). The refractive index of the (PANI-HCl)/Al(NO3)3 complex composite films increased continuously as Al(NO3)3 concentrations increased. The electrical conductivity values increased from 5.10 µS/cm to 10.00 µS/cm as Al(NO3)3 concentration increased to 32 wt.%. The sensitivity of the SPR sensing device was investigated using a theoretical approach and experimental measurements. The theoretical system of SPR measurement confirmed that increasing Al(NO3)3 in (PANI-HCl)/Al(NO3)3 complex composite films enhanced the sensitivity from about 114.5 [Deg/RIU] for Au-layer to 159.0 [Deg/RIU] for Au-((PANI-HCl)/Al(NO3)3 (32 wt.%)). In addition, the signal-to-noise ratio for Au-layer was 3.95, which increased after coating by (PANI-HCl)/Al(NO3)3 (32 wt.%) complex composite layer to 8.82. Finally, we conclude that coating Au-layer by (PANI-HCl)/Al(NO3)3 complex composite films enhances the sensitivity of the SPR sensing device.

Loading...
Thumbnail Image
Item

Laccase‐Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine

2022, Mikolasch, Annett, Lindequist, Ulrike, Witt, Sabine, Hahn, Veronika

The increasing demand for new and effective antibiotics requires intelligent strategies to obtain a wide range of potential candidates. Laccase‐catalyzed reactions have been successfully applied to synthesize new β‐lactam antibiotics and other antibiotics. In this work, laccases from three different origins were used to produce new aminoglycoside antibiotics. Kanamycin, tobramycin and gentamicin were coupled with the laccase substrate 2,5‐dihydroxy‐N‐(2‐hydroxyethyl)‐benzamide. The products were isolated, structurally characterized and tested in vitro for antibacterial activity against various strains of Staphylococci, including multidrug‐resistant strains. The cytotoxicity of these products was tested using FL cells. The coupling products showed comparable and, in some cases, better antibacterial activity than the parent antibiotics in the agar diffusion assay, and they were not cytotoxic. The products protected mice against infection with Staphylococcus aureus, which was lethal to the control animals. The results underline the great potential of laccases in obtaining new biologically active compounds, in this case new antibiotic candidates from the class of aminoglycosides.

Loading...
Thumbnail Image
Item

Biomass Alginate Derived Oxygen-Enriched Carbonaceous Materials with Partially Graphitic Nanolayers for High Performance Anodes in Lithium-Ion Batteries

2022, Sun, Xiaolei, Chen, Yao, Li, Yang, Luo, Feng

Lithium-ion batteries with high reversible capacity, high-rate capability, and extended cycle life are vital for future consumer electronics and renewable energy storage. There is a great deal of interest in developing novel types of carbonaceous materials to boost lithium storage properties due to the inadequate properties of conventional graphite anodes. In this study, we describe a facile and low-cost approach for the synthesis of oxygen-doped hierarchically porous carbons with partially graphitic nanolayers (Alg-C) from pyrolyzed Na-alginate biopolymers without resorting to any kind of activation step. The obtained Alg-C samples were analyzed using various techniques, such as X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope, to determine their structure and morphology. When serving as lithium storage anodes, the as-prepared Alg-C electrodes have outstanding electrochemical features, such as a high-rate capability (120 mAh g−1 at 3000 mA g−1) and extended cycling lifetimes over 5000 cycles. The post-cycle morphologies ultimately provide evidence of the distinct structural characteristics of the Alg-C electrodes. These preliminary findings suggest that alginate-derived carbonaceous materials may have intensive potential for next-generation energy storage and other related applications.

Loading...
Thumbnail Image
Item

Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors?

2022, Henriksson, Anders, Neubauer, Peter, Birkholz, Mario

The performance of receptor-based biosensors is often limited by either diffusion of the analyte causing unreasonable long assay times or a lack of specificity limiting the sensitivity due to the noise of nonspecific binding. Alternating current (AC) electrokinetics and its effect on biosensing is an increasing field of research dedicated to address this issue and can improve mass transfer of the analyte by electrothermal effects, electroosmosis, or dielectrophoresis (DEP). Accordingly, several works have shown improved sensitivity and lowered assay times by order of magnitude thanks to the improved mass transfer with these techniques. To realize high sensitivity in real samples with realistic sample matrix avoiding nonspecific binding is critical and the improved mass transfer should ideally be specific to the target analyte. In this paper we cover recent approaches to combine biosensors with DEP, which is the AC kinetic approach with the highest selectivity. We conclude that while associated with many challenges, for several applications the approach could be beneficial, especially if more work is dedicated to minimizing nonspecific bindings, for which DEP offers interesting perspectives.

Loading...
Thumbnail Image
Item

Comparison of Methane Emission Patterns from Dairy Housings with Solid and Slatted Floors at Two Locations

2022, Hempel, Sabrina, Janke, David, Losand, Bernd, Zeyer, Kerstin, Zähner, Michael, Mohn, Joachim, Amon, Thomas, Schrade, Sabine

Methane (CH4) emissions from dairy husbandry are a hot topic in the context of active climate protection, where housing systems with slatted floors and slurry storage inside are in general expected to emit more than systems with solid floors. There are multiple factors, including climate conditions, that modulate the emission pattern. In this study, we investigated interrelations between CH4 emission patterns and climate conditions as well as differences between farm locations versus floor effects. We considered three data sets with 265, 264 and 275 hourly emission values from two housing systems (one slatted, one solid floor) in Switzerland and one system with solid floors in Germany. Each data set incorporated measurements in summer, winter and a transition season. The average CH4 emission was highest for the slatted floor system. For the solid floor systems, CH4 emissions at the Swiss location were around 30% higher compared to the German location. The shape of the distributions for the two solid floor systems was rather similar but very different from the distribution for the slatted floor system, which showed higher prevalence for extreme emissions. Rank correlations, which measure the degree of similarity between two rankings in terms of linear relation, were not able to detect dependencies at the selected significance level. In contrast, mutual information, which measures more general statistical dependencies in terms of shared information, revealed highly significant dependencies for almost all variable pairs. The weakest statistical relation was found between winds speed and CH4 emission, but the convection regime was found to play a key role. Clustering was consistent among the three data sets with five typical clusters related to high/low temperature and wind speed, respectively, as well as in some cases to morning and evening hours. Our analysis showed that despite the disparate and often insignificant correlation between environmental variables and CH4 emission, there is a strong relation between both, which shapes the emission pattern in many aspects much more in addition to differences in the floor type. Although a clear distinction of high and low emission condition clusters based on the selected environmental variables was not possible, trends were clearly visible. Further research with larger data sets is advisable to verify the detected trends and enable prognoses for husbandry systems under different climate conditions.

Loading...
Thumbnail Image
Item

Characterization of PVL-Positive MRSA Isolates in Northern Bavaria, Germany over an Eight-Year Period

2022, Szumlanski, Tobias, Neumann, Bernd, Bertram, Ralph, Simbeck, Alexandra, Ziegler, Renate, Monecke, Stefan, Ehricht, Ralf, Schneider-Brachert, Wulf, Steinmann, Joerg

Purpose: Community-acquired methicillin-resistant Staphylococcus aureus strains (CA-MRSA) are spread worldwide and often cause recurring and persistent infections in humans. CA-MRSA strains frequently carry Panton–Valentine leukocidin (PVL) as a distinctive virulence factor. This study investigates the molecular epidemiology, antibiotic resistance and clinical characteristics of PVL-positive MRSA strains in Northern Bavaria, Germany, isolated over an eight-year period. Methods: Strains were identified by MALDI-TOF MS and antibiotic susceptibility was tested by automated microdilution (VITEK 2) or disk diffusion. PVL-encoding genes and mecA were detected by PCR. MRSA clonal complexes (CC) and lineages were assigned by genotyping via DNA microarray and spa-typing. Results: In total, 131 PVL-positive MRSA were collected from five hospital sites between 2009 and 2016. Predominant lineages were CC8-MRSA-[IV+ACME], USA300 (27/131; 20.6%); CC30-MRSA-IV, Southwest Pacific Clone (26/131; 19.8%) and CC80-MRSA-IV (25/131; 19.1%). Other CCs were detected less frequently. Resistance against erythromycin and clindamycin was prevalent, whereas all strains were sensitive towards vancomycin and linezolid. In total, 100 cases (76.3%) were causally linked to an infection. The majority (102/131; 77.9%) of isolates were detected in skin swabs or swabs from surgical sites. Conclusions: During the sample period we found an increase in the PVL-positive MRSA lineages CC30 and CC1. Compared to less-abundant lineages CC1 or CC22, the predominant lineages CC8, CC30 and CC80 harbored a broader resistance spectrum. Furthermore, these lineages are probably associated with a travel and migration background. In the spatio-temporal setting we investigated, these were arguably drivers of diversification and change in the landscape of PVL-positive MRSA.

Loading...
Thumbnail Image
Item

Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields

2022, Wolff, Christina M., Kolb, Juergen F., Bekeschus, Sander

In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.

Loading...
Thumbnail Image
Item

Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells

2022, Clemen, Ramona, Arlt, Kevin, Miebach, Lea, von Woedtke, Thomas, Bekeschus, Sander

In cancer, antigen-presenting cells (APC), including dendritic cells (DCs), take up and process proteins to mount adaptive antitumor immune responses. This often happens in the context of inflamed cancer, where reactive oxygen species (ROS) are ubiquitous to modify proteins. However, the inflammatory consequences of oxidized protein uptake in DCs are understudied. To this end, we investigated human monocyte-derived cell surface marker expression and cytokine release profiles when exposed to oxidized and native proteins. Seventeen proteins were analyzed, including viral proteins (e.g., CMV and HBV), inflammation-related proteins (e.g., HO1 and HMGB1), matrix proteins (e.g., Vim and Coll), and vastly in the laboratory used proteins (e.g., BSA and Ova). The multifaceted nature of inflammation-associated ROS was mimicked using gas plasma technology, generating reactive species cocktails for protein oxidation. Fourteen oxidized proteins led to elevated surface marker expression levels of CD25, CD40, CD80, CD86, and MHC-II as well as strongly modified release of IL6, IL8, IL10, IL12, IL23, MCP-1, and TNFα compared to their native counterparts. Especially IL8, heme oxygenase 2, and vimentin oxidation gave pronounced effects. Furthermore, protein kinase phospho-array studies in monocyte-derived cells pulsed with native vs. oxidized IL8 and insulin showed enhanced AKT and RSK2 phosphorylation. In summary, our data provide for the first time an overview of the functional consequences of oxidized protein uptake by human monocyte-derived cells and could therefore be a starting point for exploiting such principle in anticancer therapy in the future.

Loading...
Thumbnail Image
Item

Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition

2022, Franck, Max, Dabrowski, Jaroslaw, Schubert, Markus Andreas, Wenger, Christian, Lukosius, Mindaugas

The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10−7–10−3 mbar and 900–980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2–3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3–10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth.