Search Results

Now showing 1 - 10 of 28
  • Item
    Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer’s Lactate Solutions in a Model of Peritoneal Carcinomatosis
    (Basel : MDPI, 2022) Miebach, Lea; Freund, Eric; Cecchini, Alessandra Lourenço; Bekeschus, Sander
    Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer’s lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
  • Item
    Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt
    (Basel : MDPI, 2023) Monecke, Stefan; Bedewy, Amira K.; Müller, Elke; Braun, Sascha D.; Diezel, Celia; Elsheredy, Amel; Kader, Ola; Reinicke, Martin; Ghazal, Abeer; Rezk, Shahinda; Ehricht, Ralf
    The present study aims to characterise clinical MRSA isolates from a tertiary care centre in Egypt’s second-largest city, Alexandria. Thirty isolates collected in 2020 were genotypically characterised by microarray to detect their resistance and virulence genes and assign them to clonal complexes (CC) and strains. Isolates belonged to 11 different CCs and 14 different strains. CC15-MRSA-[V+fus] (n = 6), CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) (n = 5) as well as CC1-MRSA-[V+fus+tir+ccrA/B-1] and CC1153-MRSA-[V+fus] (PVL+) (both with n = 3) were the most common strains. Most isolates (83%) harboured variant or composite SCCmec V or VI elements that included the fusidic acid resistance gene fusC. The SCCmec [V+fus+tir+ccrA/B-1] element of one of the CC1 isolates was sequenced, revealing a presence not only of fusC but also of blaZ, aacA-aphD and other resistance genes. PVL genes were also common (40%). The hospital-acquired MRSA CC239-III strain was only found twice. A comparison to data from a study on strains collected in 2015 (Montelongo et al., 2022) showed an increase in fusC and PVL carriage and a decreasing prevalence of the CC239 strain. These observations indicate a diffusion of community-acquired strains into hospital settings. The beta-lactam use in hospitals and the widespread fusidic acid consumption in the community might pose a selective pressure that favours MRSA strains with composite SCCmec elements comprising mecA and fusC. This is an unsettling trend, but more MRSA typing data from Egypt are required.
  • Item
    Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields
    (Basel : MDPI, 2022) Wolff, Christina M.; Kolb, Juergen F.; Bekeschus, Sander
    In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
  • Item
    Pancreatic Cancer Cells Undergo Immunogenic Cell Death upon Exposure to Gas Plasma-Oxidized Ringers Lactate
    (Basel : MDPI, 2023) Miebach, Lea; Mohamed, Hager; Wende, Kristian; Miller, Vandana; Bekeschus, Sander
    Survival rates among patients with pancreatic cancer, the most lethal gastrointestinal cancer, have not improved compared to other malignancies. Early tumor dissemination and a supportive, cancer-promoting tumor microenvironment (TME) limit therapeutic options and consequently impede tumor remission, outlining an acute need for effective treatments. Gas plasma-oxidized liquid treatment showed promising preclinical results in other gastrointestinal and gynecological tumors by targeting the tumor redox state. Here, carrier solutions are enriched with reactive oxygen (ROS) and nitrogen (RNS) species that can cause oxidative distress in tumor cells, leading to a broad range of anti-tumor effects. Unfortunately, clinical relevance is often limited, as many studies have forgone the use of medical-grade solutions. This study investigated the efficacy of gas plasma-oxidized Ringer’s lactate (oxRilac), a physiological solution often used in clinical practice, on two pancreatic cancer cell lines to induce tumor toxicity and provoke immunogenicity. Tumor toxicity of the oxRilac solutions was further confirmed in three-dimensional tumor spheroids monitored over 72 h and in ovo using stereomicroscope imaging of excised GFP-expressing tumors. We demonstrated that cell death signaling was induced in a dose-dependent fashion in both cell lines and was paralleled by the increased surface expression of key markers of immunogenic cell death (ICD). Nuclear magnetic resonance (NMR) spectroscopy analysis suggested putative reaction pathways that may cause the non-ROS related effects. In summary, our study suggests gas plasma-deposited ROS in clinically relevant liquids as an additive option for treating pancreatic cancers via immune-stimulating and cytotoxic effects.
  • Item
    Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models
    (Basel : MDPI, 2023) Troschke-Meurer, Sascha; Zumpe, Maxi; Meißner, Lena; Siebert, Nikolai; Grabarczyk, Piotr; Forkel, Hannes; Maletzki, Claudia; Bekeschus, Sander; Lode, Holger N.
    Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy.
  • Item
    Modulation of the Tumor-Associated Immuno-Environment by Non-Invasive Physical Plasma
    (Basel : MDPI, 2023) Förster, Sarah; Niu, Yuequn; Eggers, Benedikt; Nokhbehsaim, Marjan; Kramer, Franz-Josef; Bekeschus, Sander; Mustea, Alexander; Stope, Matthias B.
    Over the past 15 years, investigating the efficacy of non-invasive physical plasma (NIPP) in cancer treatment as a safe oxidative stress inducer has become an active area of research. So far, most studies focused on the NIPP-induced apoptotic death of tumor cells. However, whether NIPP plays a role in the anti-tumor immune responses need to be deciphered in detail. In this review, we summarized the current knowledge of the potential effects of NIPP on immune cells, tumor–immune interactions, and the immunosuppressive tumor microenvironment. In general, relying on their inherent anti-oxidative defense systems, immune cells show a more resistant character than cancer cells in the NIPP-induced apoptosis, which is an important reason why NIPP is considered promising in cancer management. Moreover, NIPP treatment induces immunogenic cell death of cancer cells, leading to maturation of dendritic cells and activation of cytotoxic CD8+ T cells to further eliminate the cancer cells. Some studies also suggest that NIPP treatment may promote anti-tumor immune responses via other mechanisms such as inhibiting tumor angiogenesis and the desmoplasia of tumor stroma. Though more evidence is required, we expect a bright future for applying NIPP in clinical cancer management.
  • Item
    Multimodal imaging techniques to evaluate the anticancer effect of cold atmospheric pressure plasma
    (Basel : MDPI, 2021) Kordt, Marcel; Trautmann, Isabell; Schlie, Christin; Lindner, Tobias; Stenzel, Jan; Schildt, Anna; Boeckmann, Lars; Bekeschus, Sander; Kurth, Jens; Krause, Bernd J.; Vollmar, Brigitte; Grambow, Eberhard
    Background: Skin cancer is the most frequent cancer worldwide and is divided into non-melanoma skin cancer, including basal cell carcinoma, as well as squamous cell carcinoma (SCC) and malignant melanoma (MM). Methods: This study evaluates the effects of cold atmospheric pressure plasma (CAP) on SCC and MM in vivo, employing a comprehensive approach using multi-modal imaging techniques. Longitudinal MR and PET/CT imaging were performed to determine the anatomic and metabolic tumour volume over three‐weeks in vivo. Additionally, the formation of reactive species after CAP treatment was assessed by non‐invasive chemiluminescence imaging of L‐012. Histological analysis and immunohistochemical staining for Ki‐67, ApopTag®, F4/80, CAE, and CD31, as well as protein expression of PCNA, caspase‐3 and cleaved‐caspase‐3, were performed to study proliferation, apoptosis, inflammation, and angiogenesis in CAP‐treated tumours. Results: As the main result, multimodal in vivo imaging revealed a substantial reduction in tumour growth and an increase in reactive species after CAP treatment, in comparison to untreated tu-mours. In contrast, neither the markers for apoptosis, nor the metabolic activity of both tumour entities was affected by CAP. Conclusions: These findings propose CAP as a potential adjuvant therapy option to established standard therapies of skin cancer.
  • Item
    Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models
    (Basel : MDPI, 2023) Troschke-Meurer, Sascha; Zumpe, Maxi; Meißner, Lena; Siebert, Nikolai; Grabarczyk, Piotr; Forkel, Hannes; Maletzki, Claudia; Bekeschus, Sander; Lode, Holger N.
    Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy.
  • Item
    Gas Flow Shaping via Novel Modular Nozzle System (MoNoS) Augments kINPen-Mediated Toxicity and Immunogenicity in Tumor Organoids
    (Basel : MDPI, 2023) Berner, Julia; Miebach, Lea; Herold, Luise; Höft, Hans; Gerling, Torsten; Mattern, Philipp; Bekeschus, Sander
    Medical gas plasma is an experimental technology for anticancer therapy. Here, partial gas ionization yielded reactive oxygen and nitrogen species, placing the technique at the heart of applied redox biomedicine. Especially with the gas plasma jet kINPen, anti-tumor efficacy was demonstrated. This study aimed to examine the potential of using passive flow shaping to enhance the medical benefits of atmospheric plasma jets (APPJ). We used an in-house developed, proprietary Modular Nozzle System (MoNoS; patent-pending) to modify the flow properties of a kINPen. MoNoS increased the nominal plasma jet-derived reactive species deposition area and stabilized the air-plasma ratio within the active plasma zone while shielding it from external flow disturbances or gas impurities. At modest flow rates, dynamic pressure reduction (DPR) adapters did not augment reactive species deposition in liquids or tumor cell killing. However, MoNoS operated at kINPen standard argon fluxes significantly improved cancer organoid growth reduction and increased tumor immunogenicity, as seen by elevated calreticulin and heat-shock protein expression, along with a significantly spurred cytokine secretion profile. Moreover, the safe application of MoNoS gas plasma jet adapters was confirmed by their similar-to-superior safety profiles assessed in the hen’s egg chorioallantoic membrane (HET-CAM) coagulation and scar formation irritation assay.
  • Item
    Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue
    (Basel : MDPI, 2022) Bekeschus, Sander; Ispirjan, Mikael; Freund, Eric; Kinnen, Frederik; Moritz, Juliane; Saadati, Fariba; Eckroth, Jacqueline; Singer, Debora; Stope, Matthias B.; Wende, Kristian; Ritter, Christoph A.; Schroeder, Henry W. S.; Marx, Sascha
    Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.