Search Results

Now showing 1 - 9 of 9
  • Item
    Inverse learning in Hilbert scales
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Rastogi, Abhishake; Mathé, Peter
    We study linear ill-posed inverse problems with noisy data in the framework of statistical learning. The corresponding linear operator equation is assumed to fit a given Hilbert scale, generated by some unbounded self-adjoint operator. Approximate reconstructions from random noisy data are obtained with general regularization schemes in such a way that these belong to the domain of the generator. The analysis has thus to distinguish two cases, the regular one, when the true solution also belongs to the domain of the generator, and the ‘oversmoothing’ one, when this is not the case. Rates of convergence for the regularized solutions will be expressed in terms of certain distance functions. For solutions with smoothness given in terms of source conditions with respect to the scale generating operator, then the error bounds can then be made explicit in terms of the sample size.
  • Item
    Precipitate number density determination in microalloyed steels by complementary atom probe tomography and matrix dissolution
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Weber, Louis; Webel, Johannes; Mücklich, Frank; Kraus, Tobias
    Particle number densities are a crucial parameter in the microstructure engineering of microalloyed steels. We introduce a new method to determine nanoscale precipitate number densities of macroscopic samples that is based on the matrix dissolution technique (MDT) and combine it with atom probe tomography (APT). APT counts precipitates in microscopic samples of niobium and niobium-titanium microalloyed steels. The new method uses MDT combined with analytical ultracentrifugation (AUC) of extracted precipitates, inductively coupled plasma–optical emission spectrometry, and APT. We compare the precipitate number density ranges from APT of 137.81 to 193.56 × 1021 m−3 for the niobium steel and 104.90 to 129.62 × 1021 m−3 for the niobium-titanium steel to the values from MDT of 2.08 × 1021 m−3 and 2.48 × 1021 m−3. We find that systematic errors due to undesired particle loss during extraction and statistical uncertainties due to the small APT volumes explain the differences. The size ranges of precipitates that can be detected via APT and AUC are investigated by comparison of the obtained precipitate size distributions with transmission electron microscopy analyses of carbon extraction replicas. The methods provide overlapping resulting ranges. MDT probes very large numbers of small particles but is limited by errors due to particle etching, while APT can detect particles with diameters below 10 nm but is limited by small-number statistics. The combination of APT and MDT provides comprehensive data which allows for an improved understanding of the interrelation between thermo-mechanical controlled processing parameters, precipitate number densities, and resulting mechanical-technological material properties. Graphical abstract: [Figure not available: see fulltext.]
  • Item
    Analysis of the compressible, isotropic, neo-Hookean hyperelastic model
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Kossa, Attila; Valentine, Megan T.; McMeeking, Robert M.
    The most widely-used representation of the compressible, isotropic, neo-Hookean hyperelastic model is considered in this paper. The version under investigation is that which is implemented in the commercial finite element software ABAQUS, ANSYS and COMSOL. Transverse stretch solutions are obtained for the following homogeneous deformations: uniaxial loading, equibiaxial loading in plane stress, and uniaxial loading in plane strain. The ground-state Poisson’s ratio is used to parameterize the constitutive model, and stress solutions are computed numerically for the physically permitted range of its values. Despite its broad application to a number of engineering problems, the physical limitations of the model, particularly in the small to moderate stretch regimes, are not explored. In this work, we describe and analyze results and make some critical observations, underlining the model’s advantages and limitations. For example, a snap-back feature of the transverse stretch is identified in uniaxial compression, a physically undesirable behavior unless validated by experimental data. The domain of this non-unique solution is determined in terms of the ground-state Poisson’s ratio and the state of stretch and stress. The analyses we perform are essential to enable the understanding of the characteristics of the standard, compressible, isotropic, neo-Hookean model used in ABAQUS, ANSYS and COMSOL. In addition, our results provide a framework for the parameter-fitting procedure needed to characterize this standard, compressible, isotropic neo-Hookean model in terms of experimental data.
  • Item
    Special issue on conceptual structures
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Alam, Mehwish; Braun, Tanya; Endres, Dominik; Yun, Bruno
    [no abstract available]
  • Item
    Calculation of the steady states in dynamic semiconductor laser models
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Radziunas, Mindaugas
    We discuss numerical challenges in calculating stable and unstable steady states of widely used dynamic semiconductor laser models. Knowledge of these states is valuable when analyzing laser dynamics and different properties of the lasing states. The example simulations and analysis mainly rely on 1(time)+1(space)-dimensional traveling-wave models, where the steady state defining conditions are formulated as a system of nonlinear algebraic equations. The performed steady state calculations reveal limitations of the Lang-Kobayashi model, explain nontrivial bias threshold relations in lasers with several electrical contacts, or predict and explain transient dynamics when simulating such lasers.
  • Item
    Simulation and analysis of high-brightness tapered ridge-waveguide lasers
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Koester, Jan-Philipp; Wenzel, Hans; Wilkens, Martin; Knigge, Andrea
    In this work, a simulation-based analysis of a CW-driven tapered ridge-waveguide laser design is presented. Measurements of these devices delivered high lateral brightness values of 4 W · mm - 1mrad - 1 at 2.5W optical output power. First, active laser simulations are performed to reproduce these results. Next, the resulting complex valued intra-cavity refractive index distributions are the basis for a modal and beam propagation analysis, which demonstrates the working principle and limitation of the underlying lateral mode filter effect. Finally, the gained understanding is the foundation for further design improvements leading to lateral brightness values of up to 10 W · mm - 1mrad - 1 predicted by simulations.
  • Item
    Vortex Motions in the Solar Atmosphere: Definitions, Theory, Observations, and Modelling
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Tziotziou, K.; Scullion, E.; Shelyag, S.; Steiner, O.; Khomenko, E.; Tsiropoula, G.; Canivete Cuissa, J.R.; Wedemeyer, S.; Kontogiannis, I.; Yadav, N.; Kitiashvili, I. N.; Skirvin, S.J.; Dakanalis, I.; Kosovichev, A.G.; Fedun, V.
    Vortex flows, related to solar convective turbulent dynamics at granular scales and their interplay with magnetic fields within intergranular lanes, occur abundantly on the solar surface and in the atmosphere above. Their presence is revealed in high-resolution and high-cadence solar observations from the ground and from space and with state-of-the-art magnetoconvection simulations. Vortical flows exhibit complex characteristics and dynamics, excite a wide range of different waves, and couple different layers of the solar atmosphere, which facilitates the channeling and transfer of mass, momentum and energy from the solar surface up to the low corona. Here we provide a comprehensive review of documented research and new developments in theory, observations, and modelling of vortices over the past couple of decades after their observational discovery, including recent observations in Hα, innovative detection techniques, diverse hydrostatic modelling of waves and forefront magnetohydrodynamic simulations incorporating effects of a non-ideal plasma. It is the first systematic overview of solar vortex flows at granular scales, a field with a plethora of names for phenomena that exhibit similarities and differences and often interconnect and rely on the same physics. With the advent of the 4-m Daniel K. Inouye Solar Telescope and the forthcoming European Solar Telescope, the ongoing Solar Orbiter mission, and the development of cutting-edge simulations, this review timely addresses the state-of-the-art on vortex flows and outlines both theoretical and observational future research directions.
  • Item
    The Long-Term Evolution of the Atmosphere of Venus: Processes and Feedback Mechanisms: Interior-Exterior Exchanges
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Gillmann, Cedric; Way, M. J.; Avice, Guillaume; Breuer, Doris; Golabek, Gregor J.; Höning, Dennis; Krissansen-Totton, Joshua; Lammer, Helmut; O’Rourke, Joseph G.; Persson, Moa; Plesa, Ana-Catalina; Salvador, Arnaud; Scherf, Manuel; Zolotov, Mikhail Y.
    This work reviews the long-term evolution of the atmosphere of Venus, and modulation of its composition by interior/exterior cycling. The formation and evolution of Venus’s atmosphere, leading to contemporary surface conditions, remain hotly debated topics, and involve questions that tie into many disciplines. We explore these various inter-related mechanisms which shaped the evolution of the atmosphere, starting with the volatile sources and sinks. Going from the deep interior to the top of the atmosphere, we describe volcanic outgassing, surface-atmosphere interactions, and atmosphere escape. Furthermore, we address more complex aspects of the history of Venus, including the role of Late Accretion impacts, how magnetic field generation is tied into long-term evolution, and the implications of geochemical and geodynamical feedback cycles for atmospheric evolution. We highlight plausible end-member evolutionary pathways that Venus could have followed, from accretion to its present-day state, based on modeling and observations. In a first scenario, the planet was desiccated by atmospheric escape during the magma ocean phase. In a second scenario, Venus could have harbored surface liquid water for long periods of time, until its temperate climate was destabilized and it entered a runaway greenhouse phase. In a third scenario, Venus’s inefficient outgassing could have kept water inside the planet, where hydrogen was trapped in the core and the mantle was oxidized. We discuss existing evidence and future observations/missions required to refine our understanding of the planet’s history and of the complex feedback cycles between the interior, surface, and atmosphere that have been operating in the past, present or future of Venus.
  • Item
    Review of Environmental Monitoring by Means of Radio Waves in the Polar Regions: From Atmosphere to Geospace
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Alfonsi, Lucilla; Bergeot, Nicolas; Cilliers, Pierre J.; De Franceschi, Giorgiana; Baddeley, Lisa; Correia, Emilia; Di Mauro, Domenico; Enell, Carl-Fredrik; Engebretson, Mark; Ghoddousi-Fard, Reza; Häggström, Ingemar; Ham, Young-bae; Heygster, Georg; Jee, Geonhwa; Kero, Antti; Kosch, Michael; Kwon, Hyuck-Jin; Lee, Changsup; Lotz, Stefan; Macotela, Liliana; Marcucci, Maria Federica; Miloch, Wojciech J.; Morton, Y. Jade; Naoi, Takahiro; Negusini, Monia; Partamies, Noora; Petkov, Boyan H.; Pottiaux, Eric; Prikryl, Paul; Shreedevi, P.R.; Slapak, Rikard; Spogli, Luca; Stephenson, Judy; Triana-Gómez, Arantxa M.; Troshichev, Oleg A.; Van Malderen, Roeland; Weygand, James M.; Zou, Shasha
    The Antarctic and Arctic regions are Earth's open windows to outer space. They provide unique opportunities for investigating the troposphere–thermosphere–ionosphere–plasmasphere system at high latitudes, which is not as well understood as the mid- and low-latitude regions mainly due to the paucity of experimental observations. In addition, different neutral and ionised atmospheric layers at high latitudes are much more variable compared to lower latitudes, and their variability is due to mechanisms not yet fully understood. Fortunately, in this new millennium the observing infrastructure in Antarctica and the Arctic has been growing, thus providing scientists with new opportunities to advance our knowledge on the polar atmosphere and geospace. This review shows that it is of paramount importance to perform integrated, multi-disciplinary research, making use of long-term multi-instrument observations combined with ad hoc measurement campaigns to improve our capability of investigating atmospheric dynamics in the polar regions from the troposphere up to the plasmasphere, as well as the coupling between atmospheric layers. Starting from the state of the art of understanding the polar atmosphere, our survey outlines the roadmap for enhancing scientific investigation of its physical mechanisms and dynamics through the full exploitation of the available infrastructures for radio-based environmental monitoring.