Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Correction: A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones

2018, Sahoo, Basudev, Kreyenschulte, Carsten, Agostini, Giovanni, Lund, Henrik, Bachmann, Stephan, Scalone, Michelangelo, Junge, Kathrin, Beller, Matthias

The authors regret that the term “(iso)quinolones” was used throughout the article, including the title, when the correct term should be “(iso)quinolines”. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Loading...
Thumbnail Image
Item

Cobalt-catalysed reductive C-H alkylation of indoles using carboxylic acids and molecular hydrogen

2017, Cabrero-Antonino, Jose R., Adam, Rosa, Junge, Kathrin, Beller, Matthias

The direct CH-alkylation of indoles using carboxylic acids is presented for the first time. The catalytic system based on the combination of Co(acac)3 and 1,1,1-tris(diphenylphosphinomethyl)-ethane (Triphos, L1), in the presence of Al(OTf)3 as co-catalyst, is able to perform the reductive alkylation of 2-methyl-1H-indole with a wide range of carboxylic acids. The utility of the protocol was further demonstrated through the C3 alkylation of several substituted indole derivatives using acetic, phenylacetic or diphenylacetic acids. In addition, a careful selection of the reaction conditions allowed to perform the selective C3 alkenylation of some indole derivatives. Moreover, the alkenylation of C2 position of 3-methyl-1H-indole was also possible. Control experiments indicate that the aldehyde, in situ formed from the carboxylic acid hydrogenation, plays a central role in the overall process. This new protocol enables the direct functionalization of indoles with readily available and stable carboxylic acids using a non-precious metal based catalyst and hydrogen as reductant.

Loading...
Thumbnail Image
Item

Highly efficient enantioselective liquid-liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts

2017, Pinxterhuis, Erik B., Gualtierotti, Jean-Baptiste, Heeres, Hero J., de Vries, Johannes G., Feringa, Ben L.

Access to enantiopure compounds on large scale in an environmentally friendly and cost-efficient manner remains one of the greatest challenges in chemistry. Resolution of racemates using enantioselective liquid-liquid extraction has great potential to meet that challenge. However, a relatively feeble understanding of the chemical principles and physical properties behind this technique has hampered the development of hosts possessing sufficient resolving power for their application to large scale processes. Herein we present, employing the previously untested SPINOL based phosphoric acids host family, an in depths study of the parameters affecting the efficiency of the resolution of amino-alcohols in the optic of further understanding the core principles behind ELLE. We have systematically investigated the dependencies of the enantioselection by parameters such as the choice of solvent, the temperature, as well as the pH and bring to light many previously unsuspected and highly intriguing interactions. Furthermore, utilizing these new insights to our advantage, we developed novel, highly efficient, extraction and resolving protocols which provide remarkable levels of enantioselectivity. It was shown that the extraction is catalytic in host by demonstrating transport in a U-tube and finally it was demonstrated how the solvent dependency could be exploited in an unprecedented triphasic resolution system.

Loading...
Thumbnail Image
Item

Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes

2017, Chen, Feng, Sahoo, Basudev, Kreyenschulte, Carsten, Lund, Henrik, Zeng, Min, He, Lin, Junge, Kathrin, Beller, Matthias

Nitrogen modified cobalt catalysts supported on carbon were prepared by pyrolysis of the mixture generated from cobalt(ii) acetate in aqueous solution of melamine or waste melamine resins, which are widely used as industrial polymers. The obtained nanostructured materials catalyze the transfer hydrogenation of N-heteroarenes with formic acid in the absence of base. The optimal Co/Melamine-2@C-700 catalyst exhibits high activity and selectivity for the dehydrogenation of formic acid into molecular hydrogen and carbon dioxide and allows for the reduction of diverse N-heteroarenes including substrates featuring sensitive functional groups.

Loading...
Thumbnail Image
Item

Unprecedented selective homogeneous cobalt-catalysed reductive alkoxylation of cyclic imides under mild conditions

2017, Cabrero-Antonino, Jose R., Adam, Rosa, Papa, Veronica, Holsten, Mattes, Junge, Kathrin, Beller, Matthias

The first general and efficient non-noble metal-catalysed reductive C2-alkoxylation of cyclic imides (phthalimides and succinimides) is presented. Crucial for the success is the use of [Co(BF4)2·6H2O/triphos (L1)] combination and no external additives are required. Using the optimal cobalt-system, the hydrogenation of the aromatic ring of the parent phthalimide is avoided and only one of the carbonyl groups is selectively functionalized. The resulting products, N- and aryl-ring substituted 3-alkoxy-2,3-dihydro-1H-isoindolin-1-one and N-substituted 3-alkoxy-pyrrolidin-2-one derivatives, are prepared under mild conditions in good to excellent isolated yields. Intramolecular reductive couplings can also be performed affording tricyclic compounds in a one-step process. The present protocol opens the way to the development of new base-metal processes for the straightforward synthesis of functionalized N-heterocyclic compounds of pharmaceutical and biological interest.

Loading...
Thumbnail Image
Item

Origins of high catalyst loading in copper(i)-catalysed Ullmann-Goldberg C-N coupling reactions

2017, Sherborne, Grant J., Adomeit, Sven, Menzel, Robert, Rabeah, Jabor, Brückner, Angelika, Fielding, Mark R., Willans, Charlotte E., Nguyen, Bao N.

A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.

Loading...
Thumbnail Image
Item

A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones

2018, Sahoo, Basudev, Kreyenschulte, Carsten, Agostini, Giovanni, Lund, Henrik, Bachmann, Stephan, Scalone, Michelangelo, Junge, Kathrin, Beller, Matthias

By applying N-doped carbon modified iron-based catalysts, the controlled hydrogenation of N-heteroarenes, especially (iso)quinolones, is achieved. Crucial for activity is the catalyst preparation by pyrolysis of a carbon-impregnated composite, obtained from iron(ii) acetate and N-aryliminopyridines. As demonstrated by TEM, XRD, XPS and Raman spectroscopy, the synthesized material is composed of Fe(0), Fe3C and FeNx in a N-doped carbon matrix. The decent catalytic activity of this robust and easily recyclable Fe-material allowed for the selective hydrogenation of various (iso)quinoline derivatives, even in the presence of reducible functional groups, such as nitriles, halogens, esters and amides. For a proof-of-concept, this nanostructured catalyst was implemented in the multistep synthesis of natural products and pharmaceutical lead compounds as well as modification of photoluminescent materials. As such this methodology constitutes the first heterogeneous iron-catalyzed hydrogenation of substituted (iso)quinolones with synthetic importance.

Loading...
Thumbnail Image
Item

Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese-PNN pincer complex

2017, Papa, Veronica, Cabrero-Antonino, Jose R., Alberico, Elisabetta, Spanneberg, Anke, Junge, Kathrin, Junge, Henrik, Beller, Matthias

Novel well-defined NNP and PNP manganese pincer complexes have been synthetized and fully characterized. The catalyst Mn-2 containing an imidazolyaminolphosphino ligand shows high activity and selectivity in the hydrogenation of a wide range of secondary and tertiary amides to the corresponding alcohols and amines, under relatively mild conditions. For the first time, more challenging substrates like primary aromatic amides including an actual herbicide can also be hydrogenated using this earth-abundant metal-based pincer catalyst.

Loading...
Thumbnail Image
Item

Cooperative catalytic methoxycarbonylation of alkenes: Uncovering the role of palladium complexes with hemilabile ligands

2018, Dong, Kaiwu, Sang, Rui, Wei, Zhihong, Liu, Jie, Dühren, Ricarda, Spannenberg, Anke, Jiao, Haijun, Neumann, Helfried, Jackstell, Ralf, Franke, Robert, Beller, Matthias

Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal-ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step.

Loading...
Thumbnail Image
Item

Cobalt-based nanoparticles prepared from MOF-carbon templates as efficient hydrogenation catalysts

2018, Murugesan, Kathiravan, Senthamarai, Thirusangumurugan, Sohail, Manzar, Alshammari, Ahmad S., Pohl, Marga-Martina, Beller, Matthias, Jagadeesh, Rajenahally V.

The development of efficient and selective nanostructured catalysts for industrially relevant hydrogenation reactions continues to be an actual goal of chemical research. In particular, the hydrogenation of nitriles and nitroarenes is of importance for the production of primary amines, which constitute essential feedstocks and key intermediates for advanced chemicals, life science molecules and materials. Herein, we report the preparation of graphene shell encapsulated Co3O4- and Co-nanoparticles supported on carbon by the template synthesis of cobalt-terephthalic acid MOF on carbon and subsequent pyrolysis. The resulting nanoparticles create stable and reusable catalysts for selective hydrogenation of functionalized and structurally diverse aromatic, heterocyclic and aliphatic nitriles, and as well as nitro compounds to primary amines (>65 examples). The synthetic and practical utility of this novel non-noble metal-based hydrogenation protocol is demonstrated by upscaling several reactions to multigram-scale and recycling of the catalyst.