Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Redox Memristors with Volatile Threshold Switching Behavior for Neuromorphic Computing

2022, Wang, Yu-Hao, Gong, Tian-Cheng, Ding, Ya-Xin, Li, Yang, Wang, Wei, Chen, Zi-Ang, Du, Nan, Covi, Erika, Farronato, Matteo, Ielmini, Daniele, Zhang, Xu-Meng, Luo, Qing

The spiking neural network (SNN), closely inspired by the human brain, is one of the most powerful platforms to enable highly efficient, low cost, and robust neuromorphic computations in hardware using traditional or emerging electron devices within an integrated system. In the hardware implementation, the building of artificial spiking neurons is fundamental for constructing the whole system. However, with the slowing down of Moore’s Law, the traditional complementary metal-oxide-semiconductor (CMOS) technology is gradually fading and is unable to meet the growing needs of neuromorphic computing. Besides, the existing artificial neuron circuits are complex owing to the limited bio-plausibility of CMOS devices. Memristors with volatile threshold switching (TS) behaviors and rich dynamics are promising candidates to emulate the biological spiking neurons beyond the CMOS technology and build high-efficient neuromorphic systems. Herein, the state-of-the-art about the fundamental knowledge of SNNs is reviewed. Moreover, we review the implementation of TS memristor-based neurons and their systems, and point out the challenges that should be further considered from devices to circuits in the system demonstrations. We hope that this review could provide clues and be helpful for the future development of neuromorphic computing with memristors.

Loading...
Thumbnail Image
Item

A Computational Pipeline for Sepsis Patients’ Stratification and Diagnosis

2018, Campos, David, Pinho, Renato, Neugebauer, Ute, Popp, Juergen, Oliveira, José Luis, Zwiggelaar, Reyer, Gamboa, Hugo, Fred, Ana, Bermúdez i Badia, Sergi

Sepsis is still a little acknowledged public health issue, despite its increasing incidence and the growing mortality rate. In addition, a clear diagnosis can be lengthy and complicated, due to highly variable symptoms and non-specific criteria, causing the disease to be diagnosed and treated too late. This paper presents the HemoSpec platform, a decision support system which, by collecting and automatically processing data from several acquisition devices, can help in the early diagnosis of sepsis.