Search Results

Now showing 1 - 6 of 6
  • Item
    Multi-color imaging of magnetic Co/Pt heterostructures
    (Melville, NY : AIP Publishing LLC, 2017) Willems, Felix; von Korff Schmising, Clemens; Weder, David; Günther, Christian M.; Schneider, Michael; Pfau, Bastian; Meise, Sven; Guehrs, Erik; Geilhufe, Jan; Merhe, Alaa El Din; Jal, Emmanuelle; Vodungbo, Boris; Lüning, Jan; Mahieu, Benoit; Capotondi, Flavio; Pedersoli, Emanuele; Gauthier, David; Manfredda, Michele; Eisebitt, Stefan
    We present an element specific and spatially resolved view of magnetic domainsin Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonantsmall-angle scattering and coherent imaging with Fourier-transform holographyreveal nanoscale magnetic domain networks via magnetic dichroism of Co at theM2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt.We demonstrate for the first time simultaneous, two-color coherent imaging at afree-electron laser facility paving the way for a direct real space access toultrafast magnetization dynamics in complex multicomponent material systems.
  • Item
    Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources
    (Melville, NY : AIP Publishing LLC, 2017) Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub- 100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.
  • Item
    Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization
    (Melville, NY : AIP Publishing LLC, 2018) Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W. L.; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca
    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.
  • Item
    Soft-mode driven polarity reversal in ferroelectrics mapped by ultrafast x-ray diffraction
    (Melville, NY : AIP Publishing LLC, 2018) Hauf, Christoph; Hernandez Salvador, Antonio-Andres; Holtz, Marcel; Woerner, Michael; Elsaesser, Thomas
    Quantum theory has linked microscopic currents and macroscopic polarizations of ferroelectrics, but the interplay of lattice excitations and charge dynamics on atomic length and time scales is an open problem. Upon phonon excitation in the prototypical ferroelectric ammonium sulfate [(NH4)2SO4], we determine transient charge density maps by femtosecond x-ray diffraction. A newly discovered low frequency-mode with a 3 ps period and sub-picometer amplitudes induces periodic charge relocations over some 100 pm, a hallmark of soft-mode behavior. The transient charge density allows for deriving the macroscopic polarization, showing a periodic reversal of polarity.
  • Item
    Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations
    (Melville, NY : AIP Publishing LLC, 2017) Liu, Yingliang; Guchhait, Biswajit; Siebert, Torsten; Fingerhut, Benjamin P.; Elsaesser, Thomas
    Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm-1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.
  • Item
    Perspective: Structure and ultrafast dynamics of biomolecular hydration shells
    (Melville, NY : AIP Publishing LLC, 2017) Laage, Damien; Elsaesser, Thomas; Hynes, James T.
    The structure and function of biomolecules can be strongly influenced by their hydration shells. A key challenge is thus to determine the extent to which these shells differ from bulk water, since the structural fluctuations and molecular excitations of hydrating water molecules within these shells can cover a broad range in both space and time. Recent progress in theory, molecular dynamics simulations, and ultrafast vibrational spectroscopy has led to new and detailed insight into the fluctuations of water structure, elementary water motions, and electric fields at hydrated biointerfaces. Here, we discuss some central aspects of these advances, focusing on elementary molecular mechanisms and processes of hydration on a femto-to picosecond time scale, with some special attention given to several issues subject to debate.