Search Results

Now showing 1 - 10 of 33
Loading...
Thumbnail Image
Item

Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade

2023, von Haugwitz, Gerlis, Donnelly, Kian, Di Filippo, Mara, Breite, Daniel, Phippard, Max, Schulze, Agnes, Wei, Ren, Baumann, Marcus, Bornscheuer, Uwe T.

Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.

Loading...
Thumbnail Image
Item

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol

2016-12-2, Andérez-Fernández, María, Vogt, Lydia K., Fischer, Steffen, Zhou, Wei, Jiao, Haijun, Garbe, Marcel, Elangovan, Saravanakumar, Junge, Kathrin, Junge, Henrik, Ludwig, Ralf, Beller, Matthias

For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.

Loading...
Thumbnail Image
Item

Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes

2022-10-31, Joseph, Anton, Wagner, Anna M., Garay-Sarmiento, Manuela, Aleksanyan, Mina, Haraszti, Tamás, Söder, Dominik, Georgiev, Vasil N., Dimova, Rumiana, Percec, Virgil, Rodriguez-Emmenegger, Cesar

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron is introduced. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond.

Loading...
Thumbnail Image
Item

Silane-Mediated Expansion of Domains in Si-Doped κ-Ga2O3 Epitaxy and its Impact on the In-Plane Electronic Conduction

2022, Mazzolini, Piero, Fogarassy, Zsolt, Parisini, Antonella, Mezzadri, Francesco, Diercks, David, Bosi, Matteo, Seravalli, Luca, Sacchi, Anna, Spaggiari, Giulia, Bersani, Danilo, Bierwagen, Oliver, Janzen, Benjamin Moritz, Marggraf, Marcella Naomi, Wagner, Markus R., Cora, Ildiko, Pécz, Béla, Tahraoui, Abbes, Bosio, Alessio, Borelli, Carmine, Leone, Stefano, Fornari, Roberto

Unintentionally doped (001)-oriented orthorhombic κ-Ga2O3 epitaxial films on c-plane sapphire substrates are characterized by the presence of ≈ 10 nm wide columnar rotational domains that can severely inhibit in-plane electronic conduction. Comparing the in- and out-of-plane resistance on well-defined sample geometries, it is experimentally proved that the in-plane resistivity is at least ten times higher than the out-of-plane one. The introduction of silane during metal-organic vapor phase epitaxial growth not only allows for n-type Si extrinsic doping, but also results in the increase of more than one order of magnitude in the domain size (up to ≈ 300 nm) and mobility (highest µ ≈ 10 cm2V−1s−1, with corresponding lowest ρ ≈ 0.2 Ωcm). To qualitatively compare the mean domain dimension in κ-Ga2O3 epitaxial films, non-destructive experimental procedures are provided based on X-ray diffraction and Raman spectroscopy. The results of this study pave the way to significantly improved in-plane conduction in κ-Ga2O3 and its possible breakthrough in new generation electronics. The set of cross-linked experimental techniques and corresponding interpretation here proposed can apply to a wide range of material systems that suffer/benefit from domain-related functional properties.

Loading...
Thumbnail Image
Item

On the Reactivity of Phosphaalumenes towards C−C Multiple Bonds

2023, Nees, Samuel, Wellnitz, Tim, Dankert, Fabian, Härterich, Marcel, Dotzauer, Simon, Feldt, Milica, Braunschweig, Holger, Hering‐Junghans, Christian

Heterocycles containing group 13 and 15 elements such as borazines are an integral part of organic, biomedical and materials chemistry. Surprisingly, heterocycles containing P and Al are rare. We have now utilized phosphaalumenes in reactions with alkynes, alkenes and conjugated double bond systems. With sterically demanding alkynes 1,2-phosphaalumetes were afforded, whereas the reaction with HCCH or HCCSiMe3 gave 1,4-phosphaaluminabarrelenes. Using styrene saturated 1,2-phosphaalumates were formed, which reacted further with additional styrene to give different regio-isomers of 1,4-aluminaphosphorinanes. Using ethylene, a 1,4-aluminaphosphorinane is obtained, while with 1,3-butadiene a bicyclic system containing an aluminacyclopentane and a phosphirane unit was synthesized. The experimental work is supported by theoretical studies to shed light on the mechanism governing the formation of these heterocycles.

Loading...
Thumbnail Image
Item

Transient spin injection efficiencies at ferromagnet/metal interfaces

2022-10-19, Elliott, Peter, Eschenlohr, Andrea, Chen, Jinghao, Shallcross, Sam, Bovensiepen, Uwe, Dewhurst, John Kay, Sharma, Sangeeta

Spin injection across interfaces driven by ultrashort optical pulses on femtosecond timescales constitutes a new way to design spintronics applications. Targeted utilization of this phenomenon requires knowledge of the efficiency of non-equilibrium spin injection. From a quantitative comparison of ab initio time-dependent density functional theory and interface-sensitive, time-resolved non-linear optical experiment, the spin injection efficiency (SIE) at the Co/Cu(001) interface is determined, and its microscopic origin, i.e., the influence of spin-orbit coupling and the interface electronic structure, is discussed. Moreover, we theoretically predict that the SIE at ferromagnetic–metal interfaces can be optimized through laser pulse and materials parameters, namely the fluence, pulse duration, and substrate material.

Loading...
Thumbnail Image
Item

Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications

2018, Hensel, René, Moh, Karsten, Arzt, Eduard

Reversible adhesion is the key functionality to grip, place, and release objects nondestructively. Inspired by nature, micropatterned dry adhesives are promising candidates for this purpose and have attracted the attention of research groups worldwide. Their enhanced adhesion compared to nonpatterned surfaces is frequently demonstrated. An important conclusion is that the contact mechanics involved is at least as important as the surface energy and chemistry. In this paper, the roles of the contact geometry and mechanical properties are reviewed. With a focus on applications, the effects of substrate roughness and of temperature variations, and the long-term performance of micropatterned adhesives are discussed. The paper provides a link between the current, detailed understanding of micropatterned adhesives and emerging applications.

Loading...
Thumbnail Image
Item

Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes

2017-9-13, Jarvis, Amanda G., Obrecht, Lorenz, Deuss, Peter J., Laan, Wouter, Gibson, Emma K., Wells, Peter P., Kamer, Paul C. J.

Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein-binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.

Loading...
Thumbnail Image
Item

The Role of Al2O3 ALD Coating on Sn-Based Intermetallic Anodes for Rate Capability and Long-Term Cycling in Lithium-Ion Batteries

2022, Soltani, Niloofar, Abbas, Syed Muhammad, Hantusch, Martin, Lehmann, Sebastian, Nielsch, Kornelius, Bahrami, Amin, Mikhailova, Daria

The electrochemical performances of CoSn2 and Ni3Sn4 as potential anode materials in lithium-ion batteries (LIBs) are investigated using varying thicknesses of an alumina layer deposited by the atomic layer deposition (ALD) technique. Rate capability results showed that at high current densities, Al2O3-coated CoSn2 and Ni3Sn4 electrodes after 10-ALD cycles outperformed uncoated materials. The charge capacities of coated CoSn2 and Ni3Sn4 electrodes are 571 and 134 mAh g−1, respectively, at a high current density of 5 A g−1, while the capacities of uncoated electrodes are 363 and 11 mAh g−1. When the current density is reduced to 1 A g−1, however, the cycling performances of Al2O3-coated CoSn2 and Ni3Sn4 electrodes fade faster after almost 40 cycles than uncoated electrodes. The explanation is found in the composition of the solid-electrolyte interface (SEI), which strongly depends on the current rate. Thus, X-ray photoelectron spectroscopy analysis of SEI layers on coated samples cycles at a low current density of 0.1 Ag−1, revealed organic carbonates as major products, which probably have a low ionic conductivity. In contrast, the SEI of coated materials cycled at 5 Ag−1 consists mostly of mixed inorganic/organic fluorine-rich Al-F and C-F species facilitating a higher ionic transport, which improves electrochemical performance.

Loading...
Thumbnail Image
Item

Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion

2021, Zhang, Qihao, Huang, Aibin, Ai, Xin, Liao, Jincheng, Song, Qingfeng, Reith, Heiko, Cao, Xun, Fang, Yueping, Schierning, Gabi, Nielsch, Kornelius, Bai, Shengqiang, Chen, Lidong

Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.