Search Results

Now showing 1 - 3 of 3
  • Item
    Energy Systems and Applications in Agriculture
    (Basel : MDPI, 2022) Sultan, Muhammad; Mahmood, Muhammad Hamid; Ahamed, Md Shamim; Shamshiri, Redmond R.; Shahzad, Muhammad Wakil
    [No abstract available]
  • Item
    Comprehensive Assessment of the Dynamics of Banana Chilling Injury by Advanced Optical Techniques
    (Basel : MDPI, 2021) Herppich, Werner B.; Zsom, Tamás
    Green‐ripe banana fruit are sensitive to chilling injury (CI) and, thus, prone to postharvest quality losses. Early detection of CI facilitates quality maintenance and extends shelf life. CI affects all metabolic levels, with membranes and, consequently, photosynthesis being primary targets. Optical techniques such as chlorophyll a fluorescence analysis (CFA) and spectroscopy are promising tools to evaluate CI effects in photosynthetically active produce. Results obtained on bananas are, however, largely equivocal. This results from the lack of a rigorous evaluation of chilling impacts on the various aspects of photosynthesis. Continuous and modulated CFA and imaging (CFI), and VIS remission spectroscopy (VRS) were concomitantly applied to noninvasively and comprehensively monitor photosynthetically relevant effects of low temperatures (5 °C, 10 °C, 11.5 °C and 13 °C). Detailed analyses of chilling‐related variations in photosynthetic activity and photoprotection, and in contents of relevant pigments in green‐ripe bananas, helped to better understand the physiological changes occurring during CI, highlighting that distinct CFA and VRS parameters comprehensively reflect various effects of chilling on fruit photosynthesis. They revealed why not all CFA parameters can be applied meaningfully for early detection of chilling effects. This study provides relevant requisites for improving CI monitoring and prediction.
  • Item
    A Review of Biomass Briquette Binders and Quality Parameters
    (Basel : MDPI, 2022) Obi, Okey Francis; Pecenka, Ralf; Clifford, Michael J.
    The adverse effect of the use of fossil fuels on the environment and public health has given rise to a sustained renewable energy research and development. An important component of global renewable energy mix is the use of loose biomass, including agricultural and forestry residues, to produce solid fuels in the form of briquettes. Briquettes play a significant role in bioenergy mix in developing and developed countries. The production of biomass briquettes often entails the collection, transportation, storage, processing, and compaction of loose biomass that meet specific quality parameters. The densification process often involves the addition of binders to improve the cohesive strength of the briquette material. This paper surveys recent literature from 2012 to 2021 to establish the current state of research on the use of binders in briquette production; and reviews current parameters used in assessing the quality of biomass briquettes with focus on mechanical and handling properties. While a number of quality parameters were identified, their assessment methodologies varied widely in the literature, thus necessitating standardization for comparability purposes. The review also includes factors affecting the wide production and adoption of biomass briquettes in most developing economies and proposes ways of overcoming the bottlenecks.