Search Results

Now showing 1 - 10 of 17
  • Item
    Lasing by Template-Assisted Self-Assembled Quantum Dots
    (Weinheim : Wiley-VCH, 2023) Aftenieva, Olha; Sudzius, Markas; Prudnikau, Anatol; Adnan, Mohammad; Sarkar, Swagato; Lesnyak, Vladimir; Leo, Karl; Fery, Andreas; König, Tobias A.F.
    Miniaturized laser sources with low threshold power are required for integrated photonic devices. Photostable core/shell nanocrystals are well suited as gain material and their laser properties can be exploited by direct patterning as distributed feedback (DFB) lasers. Here, the 2nd-order DFB resonators tuned to the photoluminescence wavelength of the QDs are used. Soft lithography based on template-assisted colloidal self-assembly enables pattern resolution in the subwavelength range. Combined with the directional Langmuir–Blodgett arrangement, control of the waveguide layer thickness is further achieved. It is shown that a lasing threshold of 5.5 mJ cm−2 is reached by a direct printing method, which can be further reduced by a factor of ten (0.6 mJ cm−2) at an optimal waveguide thickness. Moreover, it is discussed how one can adjust the DFB geometries to any working wavelength. This colloidal approach offers prospects for applications in bioimaging, biomedical sensing, anti-counterfeiting, or displays.
  • Item
    Effects of (complementary) polyelectrolytes characteristics on composite calcium carbonate microparticles properties
    (Bucureşti : [Verlag nicht ermittelbar], 2017) Mic, Cristian Barbu; Mihai, Marcela; Varganici, Cristian Dragos; Schwarz, Simona; Scutaru, Dan; Simionescu, Bogdan C.
    This study follows the possibility to tune the thermal stability of some CaCO3/polymer composites by crystal growth from supersaturated solutions controlled by polymer structure or by using nonstoichiometric polyelectrolyte complexes (NPECs). As the ratio between the organic and inorganic parts in the composites controls the Ca2+/polymer network crosslinking density, the CaCO3/polymer weight ratio was kept constant at 50/1, varying the initial concentration of the polyanions solutions (0.05 or 0.06 wt.%), the NPECs molar ratio , n+/n- (0.2 or 0.4), or the inorganic precursors concentration (0.25 or 0.3 M). Poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid) (PSA) and chondroitin-4-sulfate (CSA) were used as polyanions. Some NPEC dispersions, prepared with the same polyanions and poly(allylamine hydrochloride) (PAH), were also used for calcium carbonate crystallization. The characteristics of the prepared composites were investigated by scanning electron microscopy (SEM), flow particle image analysis (FPIA), particles charge density (CD), zeta-potential (ZP). The thermal stability of the composite particles was investigated as compared to bare CaCO3 microparticles prepared at the same initial inorganic concentrations.
  • Item
    Benzoyl side-chains push the open-circuit voltage of PCDTBT/PCBM solar cells beyond 1 V
    (Amsterdam [u.a.] : Elsevier Science, 2017) Lombeck, Florian; Müllers, Stefan; Komber, Hartmut; Menke, S. Matthew; Pearson, Andrew J.; Conaghan, Patrick J.; McNeill, Christopher R.; Friend, Richard H.; Sommer, Michael
    The synthesis, characterization and solar cell performance of PCDTBT and its highly soluble analogue hexyl-PCDTBT with cross-conjugated benzoyl moieties at the carbazole comonomer are presented. Through the use of both model reactions and time-controlled microwave-assisted Suzuki polycondensation, the base-induced cleavage of the benzoyl group from the polymer backbone has been successfully suppressed. Compared to the commonly used symmetrically branched alkyl motif, the benzoyl substituent lowers the energy levels of PCDTBT as well as the band gap, and consequently increases energy of the charge transfer state in blends with PC71BM. As a result, photovoltaic diodes with high-open circuit voltage of above 1 V are realized.
  • Item
    Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient
    (Basel : MDPI, 2020) Krause, Beate; Konidakis, Ioannis; Arjmand, Mohammad; Sundararaj, Uttandaraman; Fuge, Robert; Liebscher, Marco; Hampel, Silke; Klaus, Maxim; Serpetzoglou, Efthymis; Stratakis, Emmanuel; Pötschke, Petra
    This study describes the application of multi-walled carbon nanotubes that were nitrogen-doped during their synthesis (N-MWCNTs) in melt-mixed polypropylene (PP) composites. Different types of N-MWCNTs, synthesized using different methods, were used and compared. Four of the five MWCNT grades showed negative Seebeck coefficients (S), indicating n-type charge carrier behavior. All prepared composites (with a concentration between 2 and 7.5 wt% N-MWCNTs) also showed negative S values, which in most cases had a higher negative value than the corresponding nanotubes. The S values achieved were between 1.0 µV/K and −13.8 µV/K for the N-MWCNT buckypapers or powders and between −4.7 µV/K and −22.8 µV/K for the corresponding composites. With a higher content of N-MWCNTs, the increase in electrical conductivity led to increasing values of the power factor (PF) despite the unstable behavior of the Seebeck coefficient. The highest power factor was achieved with 4 wt% N-MWCNT, where a suitable combination of high electrical conductivity and acceptable Seebeck coefficient led to a PF value of 6.1 × 10−3 µW/(m·K2). First experiments have shown that transient absorption spectroscopy (TAS) is a useful tool to study the carrier transfer process in CNTs in composites and to correlate it with the Seebeck coefficient.
  • Item
    Process Monitoring of a Vibration Dampening CFRP Drill Tube in BTA deep hole drilling using Fibre-Bragg-Grating Sensors
    (Amsterdam [u.a.] : Elsevier, 2022) Summa, Jannik; Michel, Sebastian; Kurkowski, Moritz; Biermann, Dirk; Stommel, Markus; Herrmann, Hans-Georg
    The large tool length in BTA deep hole drilling often leads to strong torsional vibrations of the tool system, leading to a reduced bore hole quality failures. When substituting steel drill tubes with tubes from composite material, the laminate structure dampens these vibrations. Secondly, the integration of sensors allow to monitor process vibrations. This contribution introduces a new sensor platform to measure process vibrations, feed force and drilling torque using Fibre-Bragg Grating Sensors. The presented experimental results focus on characteristic frequency spectra with natural torsional and compression frequencies of the CFRP drill tube, which show variations due to changed feed.
  • Item
    Comparison of nanotubes produced by fixed bed and aerosol-CVD methods and their electrical percolation behaviour in melt mixed polyamide 6.6 composites
    (Barking : Elsevier, 2010) Krause, Beate; Ritschel, M.; Täschner, C.; Oswald, S.; Gruner, W.; Leonhardt, A.; Pötschke, Petra
    The electrical percolation behaviour of five different kinds of carbon nanotubes (CNTs) synthesised by two CVD techniques was investigated on melt mixed composites based on an insulating polyamide 6.6 matrix. The electrical percolation behaviour was found to be strongly dependent on the properties of CNTs which varied with the synthesis conditions. The lowest electrical percolation threshold (0.04 wt.%) was determined for as grown multi-walled carbon nanotubes without any purification or chemical treatment. Such carbon nanotubes were synthesised by the aerosol method using acetonitrile as ferrocene containing solvent and show relatively low oxygen content near the surface, high aspect ratio, and good dispersability. Similar properties could be found for nanotubes produced by the aerosol method using cyclohexane, whereas CNTs produced by the fixed bed method using different iron contents in the catalyst material showed much higher electrical percolation thresholds between 0.35 and 1.02 wt.%. © 2009 Elsevier Ltd. All rights reserved.
  • Item
    Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black
    (Barking : Elsevier, 2011) Socher, Robert; Krause, Beate; Hermasch, Sylvia; Wursche, Roland; Pötschke, Petra
    Hybrid filler systems of multiwalled carbon nanotubes (MWCNTs) and carbon black (CB) were incorporated into two types of polyamide 12 (PA12) using small-scale melt mixing in order to identify potential synergistic effects on the interaction of these two electrical conductive fillers. Although no synergistic effects were observed regarding the electrical percolation threshold, at loadings well above the percolation threshold higher volume conductivities were obtained for samples containing both, MWCNT and CB, as compared to single fillers. This effect was more pronounced when using a higher viscous PA12 matrix. The formation of a co-supporting network can be assumed. The combined use of CB and MWCNTs improved the macrodispersion of MWCNT agglomerates, which can be assigned as a synergistic effect. DSC measurements indicated an effect of the nanofiller on crystallisation temperatures of PA12; however this was independent of the kind or amount of the carbon nanofiller. © 2011 Elsevier Ltd.
  • Item
    Ultralow percolation threshold in polyamide 6.6/MWCNT composites
    (Barking : Elsevier, 2015) Krause, Beate; Boldt, Regine; Häußler, Liane; Pötschke, Petra
    When incorporating multiwalled carbon nanotubes (MWCNTs) synthesised by the aerosol-CVD method using different solvents into polyamide 6.6 (PA66) by melt mixing an ultralow electrical percolation threshold of 0.04. wt.% was found. This very low threshold was assigned to the specific characteristic of the MWCNTs for which a very high aspect ratio, a good dispersability in aqueous surfactant dispersions, and relatively low oxygen content near the surface were measured. The investigation of the composites by transmission electron microscopy on ultrathin cuts as well as by scanning electron microscopy combined with charge contrast imaging on compression moulded plates illustrated a good MWCNT dispersion within the PA66 matrix and that the very high aspect ratio of the nanotubes remained even after melt processing. Additionally, the thermal behaviour of the PA66 composites was investigated using differential scanning calorimetry (DSC) showing that the addition of only 0.05. wt.% MWCNT leads to an increase of the onset crystallization temperature of 11. K.
  • Item
    Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites
    (Barking : Elsevier, 2011) Krause, Beate; Villmow, Tobias; Boldt, Regine; Mende, Mandy; Petzold, Gudrun; Pötschke, Petra
    Ball milling of carbon nanotubes (CNTs) in the dry state is a common way to produce tailored CNT materials for composite applications, especially to adjust nanotube lengths. For NanocylTM NC7000 nanotube material before and after milling for 5 and 10h the length distributions were quantified using TEM analysis, showing decreases of the mean length to 54% and 35%, respectively. With increasing ball milling time in addition a decrease of agglomerate size and an increase of packing density took place resulting in a worse dispersability in aqueous surfactant solutions. In melt mixed CNT/polycarbonate composites produced using masterbatch dilution step, the electrical properties, the nanotube length distribution after processing, and the nano- and macrodispersion of the nanotubes were studied. The slight increase in the electrical percolation threshold in the melt mixed composites with ball milling time of CNTs can be assigned to lower nanotube lengths as well as the worse dispersability of the ball milled nanotubes. After melt compounding, the mean CNT lengths were shortened to 31%, 50%, and 66% of the initial lengths of NC7000, NC7000-5h, and NC7000-10h, respectively. © 2011 Elsevier Ltd.
  • Item
    Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials
    (Amsterdam [u.a.] : Elsevier, 2018) Gnanaseelan, Minoj; Chen, Yian; Luo, Jinji; Krause, Beate; Pionteck, Jürgen; Pötschke, Petra; Qu, Haisong
    Thermoelectric materials based on cellulose/carbon nanotube (CNT) nanocomposites have been developed by a facile approach and the effects of amount (2–10 wt%) and types of CNTs (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)) on the morphology (films and aerogels) and the thermoelectric properties of the nanocomposites have been investigated. Composite films based on SWCNTs showed significantly higher electrical conductivity (5 S/cm at 10 wt%) and Seebeck coefficient (47.2 μV/K at 10 wt%) compared to those based on MWCNTs (0.9 S/cm and 11 μV/K, respectively). Lyophilization, leading to development of aerogels with sub-micron sized pores, decreased the electrical conductivity for both types by one order of magnitude, but did not affect the Seebeck coefficient of MWCNT based nanocomposites. For SWCNT containing aerogels, higher Seebeck coefficients than for films were measured at 3 and 4 wt% but significantly lower values at higher loadings. CNT addition increased the thermal conductivity from 0.06 to 0.12 W/(m∙K) in the films, whereas the lyophilization significantly reduced it towards values between 0.01 and 0.09 W/(m∙K) for the aerogels. The maximum Seebeck coefficient, power factor, and ZT observed in this study are 49 μV/K for aerogels with 3 wt% SWCNTs, 1.1 μW/(m∙K2) for composite films with 10 wt% SWCNTs, and 7.4 × 10−4 for films with 8 wt% SWCNTs, respectively.