Search Results

Now showing 1 - 10 of 12
  • Item
    Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt
    (Basel : MDPI, 2023) Monecke, Stefan; Bedewy, Amira K.; Müller, Elke; Braun, Sascha D.; Diezel, Celia; Elsheredy, Amel; Kader, Ola; Reinicke, Martin; Ghazal, Abeer; Rezk, Shahinda; Ehricht, Ralf
    The present study aims to characterise clinical MRSA isolates from a tertiary care centre in Egypt’s second-largest city, Alexandria. Thirty isolates collected in 2020 were genotypically characterised by microarray to detect their resistance and virulence genes and assign them to clonal complexes (CC) and strains. Isolates belonged to 11 different CCs and 14 different strains. CC15-MRSA-[V+fus] (n = 6), CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) (n = 5) as well as CC1-MRSA-[V+fus+tir+ccrA/B-1] and CC1153-MRSA-[V+fus] (PVL+) (both with n = 3) were the most common strains. Most isolates (83%) harboured variant or composite SCCmec V or VI elements that included the fusidic acid resistance gene fusC. The SCCmec [V+fus+tir+ccrA/B-1] element of one of the CC1 isolates was sequenced, revealing a presence not only of fusC but also of blaZ, aacA-aphD and other resistance genes. PVL genes were also common (40%). The hospital-acquired MRSA CC239-III strain was only found twice. A comparison to data from a study on strains collected in 2015 (Montelongo et al., 2022) showed an increase in fusC and PVL carriage and a decreasing prevalence of the CC239 strain. These observations indicate a diffusion of community-acquired strains into hospital settings. The beta-lactam use in hospitals and the widespread fusidic acid consumption in the community might pose a selective pressure that favours MRSA strains with composite SCCmec elements comprising mecA and fusC. This is an unsettling trend, but more MRSA typing data from Egypt are required.
  • Item
    Integrated Energy System Optimization Based on Standardized Matrix Modeling Method
    (Basel : MDPI, 2018-11-23) Li, Jingchao; Ying, Yulong; Lou, Xingdan; Fan, Juanjuan; Chen, Yunlongyu; Bi, Dongyuan
    Aiming at the optimization of an integrated energy system, a standardized matrix modeling method and optimization method for an integrated energy system is proposed. Firstly, from the perspective of system engineering, the energy flow between energy conversion devices is used as a state variable to deal with nonlinear problems caused by the introduction of scheduling factors, and a standardized matrix model of the integrated energy system is constructed. Secondly, based on the proposed model, the structural optimization (i.e., energy flow structure and equipment type), design optimization (i.e., equipment capacity and quantity), and operation optimization for the integrated energy system can be achieved. The simulation case studies have shown that the proposed integrated energy system standardized matrix modeling method and optimization method are both simple and efficient, and can be effectively used to decide the system components and their interconnections, and the technical characteristics and daily operating strategy of the system components.
  • Item
    Shape-Dependent Catalytic Activity of Gold and Bimetallic Nanoparticles in the Reduction of Methylene Blue by Sodium Borohydride
    (Basel : MDPI, 2021) Stolle, Heike Lisa Kerstin Stephanie; Kluitmann, Jonas Jakobus; Csáki, Andrea; Köhler, Johann Michael; Fritzsche, Wolfgang
    In this study the catalytic activity of different gold and bimetallic nanoparticle solutions towards the reduction of methylene blue by sodium borohydride as a model reaction is investigated. By utilizing differently shaped gold nanoparticles, i.e., spheres, cubes, prisms and rods as well as bimetallic gold–palladium and gold–platinum core-shell nanorods, we evaluate the effect of the catalyst surface area as available gold surface area, the shape of the nanoparticles and the impact of added secondary metals in case of bimetallic nanorods. We track the reaction by UV/Vis measurements in the range of 190–850 nm every 60 s. It is assumed that the gold nanoparticles do not only act as a unit transferring electrons from sodium borohydride towards methylene blue but can promote the electron transfer upon plasmonic excitation. By testing different particle shapes, we could indeed demonstrate an effect of the particle shape by excluding the impact of surface area and/or surface ligands. All nanoparticle solutions showed a higher methylene blue turnover than their reference, whereby gold nanoprisms exhibited 100% turnover as no further methylene blue absorption peak was detected. The reaction rate constant k was also determined and revealed overall quicker reactions when gold or bimetallic nanoparticles were added as a catalyst, and again these were highest for nanoprisms. Furthermore, when comparing gold and bimetallic nanorods, it could be shown that through the addition of the catalytically active second metal platinum or palladium, the dye turnover was accelerated and degradation rate constants were higher compared to those of pure gold nanorods. The results explore the catalytic activity of nanoparticles, and assist in exploring further catalytic applications.
  • Item
    Copper Iodide on Spacer Fabrics as Textile Thermoelectric Device for Energy Generation
    (Basel : MDPI, 2022) Schmidl, Gabriele; Jia, Guobin; Gawlik, Annett; Lorenz, Philipp; Zieger, Gabriel; Dellith, Jan; Diegel, Marco; Plentz, Jonathan
    The integration of electronic functionalities into textiles for use as wearable sensors, energy harvesters, or coolers has become increasingly important in recent years. A special focus is on efficient thermoelectric materials. Copper iodide as a p-type thermoelectrically active, nontoxic material is attractive for energy harvesting and energy generation because of its transparency and possible high-power factor. The deposition of CuI on polyester spacer fabrics by wet chemical processes represents a great potential for use in textile industry for example as flexible thermoelectric energy generators in the leisure or industrial sector as well as in medical technologies. The deposited material on polyester yarn is investigated by electron microscopy, x-ray diffraction and by thermoelectric measurements. The Seebeck coefficient was observed between 112 and 153 µV/K in a temperature range between 30 °C and 90 °C. It is demonstrated that the maximum output power reached 99 nW at temperature difference of 65.5 K with respect to room temperature for a single textile element. However, several elements can be connected in series and the output power can be linear upscaled. Thus, CuI coated on 3D spacer fabrics can be attractive to fabricate thermoelectric devices especially in the lower temperature range for textile medical or leisure applications.
  • Item
    Photophysical Study on the Rigid Pt(II) Complex [Pt(naphen)(Cl)] (Hnaphen = Naphtho[1,2-b][1,10]Phenanthroline and Derivatives
    (Basel : MDPI, 2022) Krause, Maren; Maisuls, Iván; Buss, Stefan; Strassert, Cristian A.; Winter, Andreas; Schubert, Ulrich S.; Nair, Shruthi S.; Dietzek-Ivanšić, Benjamin; Klein, Axel
    The electrochemistry and photophysics of the Pt(II) complexes [Pt(naphen)(X)] (Hnaphen = naphtho[1,2-b][1,10]phenanthroline, X = Cl or C≡CPh) containing the rigid tridentate C^N^N-coordinating pericyclic naphen ligand was studied alongside the complexes of the tetrahydro-derivative [Pt(thnaphen)(X)] (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline) and the N^C^N-coordinated complex [Pt(bdq)(Cl)] (Hbdq = benzo[1,2-h:5,4-h’]diquinoline. The cyclic voltammetry showed reversible reductions for the C^N^N complexes, with markedly fewer negative potentials (around −1.6 V vs. ferrocene) for the complexes containing the naphen ligand compared with the thnaphen derivatives (around −1.9 V). With irreversible oxidations at around +0.3 V for all of the complexes, the naphen made a difference in the electrochemical gap of about 0.3 eV (1.9 vs. 2.2 eV) compared with thnaphen. The bdq complex was completely different, with an irreversible reduction at around −2 V caused by the N^C^N coordination pattern, which lacked a good electron acceptor such as the phenanthroline unit in the C^N^N ligand naphen. Long-wavelength UV-Vis absorption bands were found around 520 to 530 nm for the C^N^N complexes with the C≡CPh coligand and were red-shifted when compared with the Cl derivatives. The N^C^N-coordinated bdq complex was markedly blue-shifted (493 nm). The steady-state photoluminescence spectra showed poorly structured emission bands peaking at around 630 nm for the two naphen complexes and 570 nm for the thnaphen derivatives. The bdq complex showed a pronounced vibrational structure and an emission maximum at 586 nm. Assuming mixed 3LC/3MLCT excited states, the vibronic progression for the N^C^N bdq complex indicated a higher LC character than assumed for the C^N^N-coordinated naphen and thnaphen complexes. The blue-shift was a result of the different N^C^N vs. C^N^N coordination. The photoluminescence lifetimes and quantum yields ΦL massively increased from solutions at 298 K (0.06 to 0.24) to glassy frozen matrices at 77 K (0.80 to 0.95). The nanosecond time-resolved study on [Pt(naphen)(Cl)] showed a phosphorescence emission signal originating from the mixed 3LC/3MLCT with an emission lifetime of around 3 µs.
  • Item
    A Review on Data Fusion of Multidimensional Medical and Biomedical Data
    (Basel : MDPI, 2022) Azam, Kazi Sultana Farhana; Ryabchykov, Oleg; Bocklitz, Thomas
    Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods.
  • Item
    Characterization of PVL-Positive MRSA Isolates in Northern Bavaria, Germany over an Eight-Year Period
    (Basel : MDPI, 2022) Szumlanski, Tobias; Neumann, Bernd; Bertram, Ralph; Simbeck, Alexandra; Ziegler, Renate; Monecke, Stefan; Ehricht, Ralf; Schneider-Brachert, Wulf; Steinmann, Joerg
    Purpose: Community-acquired methicillin-resistant Staphylococcus aureus strains (CA-MRSA) are spread worldwide and often cause recurring and persistent infections in humans. CA-MRSA strains frequently carry Panton–Valentine leukocidin (PVL) as a distinctive virulence factor. This study investigates the molecular epidemiology, antibiotic resistance and clinical characteristics of PVL-positive MRSA strains in Northern Bavaria, Germany, isolated over an eight-year period. Methods: Strains were identified by MALDI-TOF MS and antibiotic susceptibility was tested by automated microdilution (VITEK 2) or disk diffusion. PVL-encoding genes and mecA were detected by PCR. MRSA clonal complexes (CC) and lineages were assigned by genotyping via DNA microarray and spa-typing. Results: In total, 131 PVL-positive MRSA were collected from five hospital sites between 2009 and 2016. Predominant lineages were CC8-MRSA-[IV+ACME], USA300 (27/131; 20.6%); CC30-MRSA-IV, Southwest Pacific Clone (26/131; 19.8%) and CC80-MRSA-IV (25/131; 19.1%). Other CCs were detected less frequently. Resistance against erythromycin and clindamycin was prevalent, whereas all strains were sensitive towards vancomycin and linezolid. In total, 100 cases (76.3%) were causally linked to an infection. The majority (102/131; 77.9%) of isolates were detected in skin swabs or swabs from surgical sites. Conclusions: During the sample period we found an increase in the PVL-positive MRSA lineages CC30 and CC1. Compared to less-abundant lineages CC1 or CC22, the predominant lineages CC8, CC30 and CC80 harbored a broader resistance spectrum. Furthermore, these lineages are probably associated with a travel and migration background. In the spatio-temporal setting we investigated, these were arguably drivers of diversification and change in the landscape of PVL-positive MRSA.
  • Item
    Remineralization of Artificially Demineralized Human Enamel and Dentin Samples by Zinc-Carbonate Hydroxyapatite Nanocrystals
    (Basel : MDPI, 2022) Kranz, Stefan; Heyder, Markus; Mueller, Stephan; Guellmar, André; Krafft, Christoph; Nietzsche, Sandor; Tschirpke, Caroline; Herold, Volker; Sigusch, Bernd; Reise, Markus
    (1) Background: Decalcified enamel and dentin surfaces can be regenerated with non-fluoride-containing biomimetic systems. This study aimed to investigate the effect of a zinc carbonate-hydroxyapatite-containing dentifrice on artificially demineralized enamel and dentin surfaces. (2) Methods: Human enamel and dentin discs were prepared and subjected to surface demineralization with 30% orthophosphoric acid for 60 s. Subsequently, in the test group (n = 20), the discs were treated three times a day for 3 min with a zinc carbonate-hydroxyapatite-containing toothpaste (biorepair®). Afterwards, all samples were gently rinsed with PBS (5 s) and stored in artificial saliva until next use. Samples from the control group (n = 20) received no dentifrice-treatment and were stored in artificial saliva, exclusively. After 15 days of daily treatment, specimens were subjected to Raman spectroscopy, energy-dispersive X-ray micro-analysis (EDX), white-light interferometry, and profilometry. (3) Results: Raman spectroscopy and white-light interferometry revealed no significant differences compared to the untreated controls. EDX analysis showed calcium phosphate and silicon dioxide precipitations on treated dentin samples. In addition, treated dentin surfaces showed significant reduced roughness values. (4) Conclusions: Treatment with biorepair® did not affect enamel surfaces as proposed. Minor mineral precipitation and a reduction in surface roughness were detected among dentin surfaces only.
  • Item
    The Other Dimension—Tuning Hole Extraction via Nanorod Width
    (Basel : MDPI, 2022) Rosner, Tal; Pavlopoulos, Nicholas G.; Shoyhet, Hagit; Micheel, Mathias; Wächtler, Maria; Adir, Noam; Amirav, Lilac
    Solar-to-hydrogen generation is a promising approach to generate clean and renewable fuel. Nanohybrid structures such as CdSe@CdS-Pt nanorods were found favorable for this task (attaining 100% photon-to-hydrogen production efficiency); yet the rods cannot support overall water splitting. The key limitation seems to be the rate of hole extraction from the semiconductor, jeopardizing both activity and stability. It is suggested that hole extraction might be improved via tuning the rod’s dimensions, specifically the width of the CdS shell around the CdSe seed in which the holes reside. In this contribution, we successfully attain atomic-scale control over the width of CdSe@CdS nanorods, which enables us to verify this hypothesis and explore the intricate influence of shell diameter over hole quenching and photocatalytic activity towards H2 production. A non-monotonic effect of the rod’s diameter is revealed, and the underlying mechanism for this observation is discussed, alongside implications towards the future design of nanoscale photocatalysts.
  • Item
    Microparticle Manipulation and Imaging through a Self-Calibrated Liquid Crystal on Silicon Display
    (Basel : MDPI, 2018-11-20) Zhang, Haolin; Lizana, Angel; Van Eeckhout, Albert; Turpin, Alex; Ramirez, Claudio; Iemmi, Claudio; Campos, Juan
    We present in this paper a revision of three different methods we conceived in the framework of liquid crystal on silicon (LCoS) display optimization and application. We preliminarily demonstrate an LCoS self-calibration technique, from which we can perform a complete LCoS characterization. In particular, two important characteristics of LCoS displays are retrieved by using self-addressed digital holograms. On the one hand, we determine its phase-voltage curve by using the interference pattern generated by a digital two-sectorial split-lens configuration. On the other hand, the LCoS surface profile is also determined by using a self-addressed dynamic micro-lens array pattern. Second, the implementation of microparticle manipulation through optical traps created by an LCoS display is demonstrated. Finally, an LCoS display based inline (IL) holographic imaging system is described. By using the LCoS display to implement a double-sideband filter configuration, this inline architecture demonstrates the advantage of obtaining dynamic holographic imaging of microparticles independently of their spatial positions by avoiding the non-desired conjugate images.