Search Results

Now showing 1 - 3 of 3
  • Item
    Magnetic field dynamos and magnetically triggered flow instabilities
    (London [u.a.] : Institute of Physics, 2017) Stefani, F.; Albrecht, T.; Arlt, R.; Christen, M.; Gailitis, A.; Gellert, M.; Giesecke, A.; Goepfert, O.; Herault, J.; Kirillov, O.N.; Mamatsashvili, G.; Priede, J.; Rüdiger, G.; Seilmayer, M.; Tilgner, A.; Vogt, T.; Gerbeth, Gunther; Stieglitz, Robert
    The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flows with positive shear. In this survey paper, the main results of these two projects are summarized.
  • Item
    The missing links of neutron star evolution in the eROSITA all-sky X-ray survey
    (Bristol : IOP Publ., 2017) Pires, A.M.
    The observational manifestation of a neutron star is strongly connected with the properties of its magnetic field. During the star's lifetime, the field strength and its changes dominate the thermo-rotational evolution and the source phenomenology across the electromagnetic spectrum. Signatures of magnetic field evolution are best traced among elusive groups of X-ray emitting isolated neutron stars (INSs), which are mostly quiet in the radio and γ-ray wavelengths. It is thus important to investigate and survey INSs in X-rays in the hope of discovering peculiar sources and the long-sought missing links that will help us to advance our understanding of neutron star evolution. The Extended Röntgen Survey with an Imaging Telescope Array (eROSITA), the primary instrument on the forthcoming Spectrum-RG mission, will scan the X-ray sky with unprecedented sensitivity and resolution. The survey has thus the unique potential to unveil the X-ray faint end of the neutron star population and probe sources that cannot be assessed by standard pulsar surveys.
  • Item
    Nucleosynthesis in the first massive stars
    (Bristol : IOP Publ., 2018) Choplin, Arthur; Meynet, Georges; Maeder, André; Hirschi, Raphael; Chiappini, Cristina
    The nucleosynthesis in the first massive stars may be constrained by observing the surface composition of long-lived very iron-poor stars born around 10 billion years ago from material enriched by their ejecta. Many interesting clues on physical processes having occurred in the first stars can be obtained based on nuclear aspects. First, in these first massive stars, mixing must have occurred between the H-burning and the He-burning zone during their nuclear lifetimes; Second, only the outer layers of these massive stars have enriched the material from which the very iron-poor stars, observed today in the halo of the MilkyWay, have formed. These two basic requirements can be obtained by rotating stellar models at very low metallicity. In the present paper, we discuss the arguments supporting this view and illustrate the sensitivity of the results concerning the [Mg/Al] ratio on the rate of the reaction 23Na(p,γ)24Mg.