Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses

2013, Rosenfeld, A., Höhm, S., Bonse, J., Krüger, J.

The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

Loading...
Thumbnail Image
Item

Transition from ballistic to drift motion in high-field transport in GaAs

2013, Bowlan, P., Kuehn, W., Reimann, K., Woerner, M., Elsaesser, T., Hey, R., Flytzanis, C.

With strong THz pulses, we measure ultrafast transport of electrons, holes, and an electron-hole plasma in GaAs. The transition from ballistic to drift-like transport is strongly influenced by electron-hole scattering.

Loading...
Thumbnail Image
Item

Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics

2013, Grunwald, R., Das, S.K., Debroy, A., McGlynn, E., Messaoudi, H.

Nonlinear excitation mechanisms of plasmons and their influence on femtosecond-laser induced sub-wavelength ripple generation on dielectric and semiconducting transparent materials are discussed. The agreement of theoretical and experimental data indicates the relevance of the model.

Loading...
Thumbnail Image
Item

The PAC2MAN mission: A new tool to understand and predict solar energetic events

2015, Amaya, Jorge, Musset, Sophie, Andersson, Viktor, Diercke, Andrea, Höller, Christian, Iliev, Sergiu, Juhász, Lilla, Kiefer, René, Lasagni, Riccardo, Lejosne, Solène, Madi, Mohammad, Rummelhagen, Mirko, Scheucher, Markus, Sorba, Arianna, Thonhofer, Stefan

An accurate forecast of flare and coronal mass ejection (CME) initiation requires precise measurements of the magnetic energy buildup and release in the active regions of the solar atmosphere. We designed a new space weather mission that performs such measurements using new optical instruments based on the Hanle and Zeeman effects. The mission consists of two satellites, one orbiting the L1 Lagrangian point (Spacecraft Earth, SCE) and the second in heliocentric orbit at 1AU trailing the Earth by 80° (Spacecraft 80, SC80). Optical instruments measure the vector magnetic field in multiple layers of the solar atmosphere. The orbits of the spacecraft allow for a continuous imaging of nearly 73% of the total solar surface. In-situ plasma instruments detect solar wind conditions at 1AU and ahead of our planet. Earth-directed CMEs can be tracked using the stereoscopic view of the spacecraft and the strategic placement of the SC80 satellite. Forecasting of geoeffective space weather events is possible thanks to an accurate surveillance of the magnetic energy buildup in the Sun, an optical tracking through the interplanetary space, and in-situ measurements of the near-Earth environment.