Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models

2017, Baró, Rocío, Palacios-Peña, Laura, Baklanov, Alexander, Balzarini, Alessandra, Brunner, Dominik, Forkel, Renate, Hirtl, Marcus, Honzak, Luka, Pérez, Juan Luis, Pirovano, Guido, San José, Roberto, Schröder, Wolfram, Werhahn, Johannes, Wolke, Ralf, Žabkar, Rahela, Jiménez-Guerrero, Pedro

The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

Loading...
Thumbnail Image
Item

Atmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters

2018, Größ, Johannes, Hamed, Amar, Sonntag, André, Spindler, Gerald, Manninen, Hanna Elina, Nieminen, Tuomo, Kulmala, Markku, Hõrrak, Urmas, Plass-Dülmer, Christian, Wiedensohler, Alfred, Birmili, Wolfram

This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.

Loading...
Thumbnail Image
Item

An automatic observation-based aerosol typing method for EARLINET

2018, Papagiannopoulos, Nikolaos, Mona, Lucia, Amodeo, Aldo, D'Amico, Giuseppe, Gumà Claramunt, Pilar, Pappalardo, Gelsomina, Alados-Arboledas, Lucas, Guerrero-Rascado, Juan Luís, Amiridis, Vassilis, Kokkalis, Panagiotis, Apituley, Arnoud, Baars, Holger, Schwarz, Anja, Wandinger, Ulla, Binietoglou, Ioannis, Nicolae, Doina, Bortoli, Daniele, Comerón, Adolfo, Rodríguez-Gómez, Alejandro, Sicard, Michaël, Papayannis, Alex, Wiegner, Matthias

We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80%. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.