Search Results

Now showing 1 - 10 of 18
  • Item
    Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
    (Göttingen : Copernicus Publ., 2019) Braakhekke, Maarten C.; Doelman, Jonathan C.; Baas, Peter; Müller, Christoph; Schaphoff, Sibyll; Stehfest, Elke; van Vuuren, Detlef P.
    We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.
  • Item
    The impact of climate change and variability on the generation of electrical power
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Koch, H.; Vögele, S.; Hattermann, F.F.; Huang, S.
  • Item
    Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Gutsch, M.; Lasch-Born, P.; Lüttger, A.B.; Suckow, F.; Murawski, A.; Pilz, T.
  • Item
    Changes in phenology and frost risks of Vitis vinifera (cv Riesling)
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Kartschall, T.; Wodinski, M.; Von Bloh, W.; Oesterle, H.; Rachimow, C.; Hoppmann, D.
  • Item
    Future changes in extratropical storm tracks and baroclinicity under climate change
    (Bristol : IOP, 2014) Lehmann, J.; Coumou, D.; Frieler, K.; Eliseev, A.V.; Levermann, A.
    The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions.
  • Item
    Changes in meandering of the Northern Hemisphere circulation
    (Bristol : Institute of Physics Publishing, 2016) Di Capua, G.; Coumou, D.
  • Item
    Comparing impacts of climate change on streamflow in four large African river basins
    (Göttingen : Copernicus GmbH, 2014) Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; Hattermann, F.F.
    This study aims to compare impacts of climate change on streamflow in four large representative African river basins: the Niger, the Upper Blue Nile, the Oubangui and the Limpopo. We set up the eco-hydrological model SWIM (Soil and Water Integrated Model) for all four basins individually. The validation of the models for four basins shows results from adequate to very good, depending on the quality and availability of input and calibration data.

    For the climate impact assessment, we drive the model with outputs of five bias corrected Earth system models of Coupled Model Intercomparison Project Phase 5 (CMIP5) for the representative concentration pathways (RCPs) 2.6 and 8.5. This climate input is put into the context of climate trends of the whole African continent and compared to a CMIP5 ensemble of 19 models in order to test their representativeness. Subsequently, we compare the trends in mean discharges, seasonality and hydrological extremes in the 21st century. The uncertainty of results for all basins is high. Still, climate change impact is clearly visible for mean discharges but also for extremes in high and low flows. The uncertainty of the projections is the lowest in the Upper Blue Nile, where an increase in streamflow is most likely. In the Niger and the Limpopo basins, the magnitude of trends in both directions is high and has a wide range of uncertainty. In the Oubangui, impacts are the least significant. Our results confirm partly the findings of previous continental impact analyses for Africa. However, contradictory to these studies we find a tendency for increased streamflows in three of the four basins (not for the Oubangui). Guided by these results, we argue for attention to the possible risks of increasing high flows in the face of the dominant water scarcity in Africa. In conclusion, the study shows that impact intercomparisons have added value to the adaptation discussion and may be used for setting up adaptation plans in the context of a holistic approach.
  • Item
    Integrating risks of climate change into water management
    (Milton Park : Taylor and Francis Ltd., 2014) Döll, P.; Jiménez-Cisneros, B.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Jiang, T.; Kundzewicz, Z.W.; Mwakalila, S.; Nishijima, A.
    [No abstract available]
  • Item
    Flood risk and climate change: global and regional perspectives
    (Milton Park : Taylor and Francis Ltd., 2014) Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; Muir-Wood, R.; Brakenridge, G.R.; Kron, W.; Benito, G.; Honda, Y.; Takahashi, K.; Sherstyukov, B.
    A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report-Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change.
  • Item
    Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarios
    (Göttingen : Copernicus GmbH, 2017) Guimberteau, M.; Ciais, P.; Pablo, Boisier, J.; Paula Dutra Aguiar, A.; Biemans, H.; De Deurwaerder, H.; Galbraith, D.; Kruijt, B.; Langerwisch, F.; Poveda, G.; Rammig, A.; Andres Rodriguez, D.; Tejada, G.; Thonicke, K.; Von, Randow, C.; Randow, R.; Zhang, K.; Verbeeck, H.
    Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3ĝ€°C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14ĝ€%, respectively. However, in south-east Amazonia, precipitation decreases by 10ĝ€% at the end of the dry season and the three LSMs produce a 6ĝ€% decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31ĝ€% in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34ĝ€% over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27ĝ€% in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.