Search Results

Now showing 1 - 10 of 13
  • Item
    A hybrid FETI-DP method for non-smooth random partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Eigel, Martin; Gruhlke, Robert
    A domain decomposition approach exploiting the localization of random parameters in highdimensional random PDEs is presented. For high efficiency, surrogate models in multi-element representations are computed locally when possible. This makes use of a stochastic Galerkin FETI-DP formulation of the underlying problem with localized representations of involved input random fields. The local parameter space associated to a subdomain is explored by a subdivision into regions where the parametric surrogate accuracy can be trusted and where instead Monte Carlo sampling has to be employed. A heuristic adaptive algorithm carries out a problemdependent hp refinement in a stochastic multi-element sense, enlarging the trusted surrogate region in local parametric space as far as possible. This results in an efficient global parameter to solution sampling scheme making use of local parametric smoothness exploration in the involved surrogate construction. Adequately structured problems for this scheme occur naturally when uncertainties are defined on sub-domains, e.g. in a multi-physics setting, or when the Karhunen-Loéve expansion of a random field can be localized. The efficiency of this hybrid technique is demonstrated with numerical benchmark problems illustrating the identification of trusted (possibly higher order) surrogate regions and non-trusted sampling regions.
  • Item
    An adaptive multi level Monte-Carlo method with stochastic bounds for quantities of interest in groundwater flow with uncertain data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Eigel, Martin; Merdon, Christian; Neumann, Johannes
    The focus of this work is the introduction of some computable a posteriori error control to the popular multilevel Monte Carlo sampling for PDE with stochastic data. We are especially interested in applications in the geosciences such as groundwater flow with rather rough stochastic fields for the conductive permeability. With a spatial discretisation based on finite elements, a goal functional is defined which encodes the quantity of interest. The devised goal-oriented error estimator enables to determine guaranteed a posteriori error bounds for this quantity. In particular, it allows for the adaptive refinement of the mesh hierarchy used in the multilevel Monte Carlo simulation. In addition to controlling the deterministic error, we also suggest how to treat the stochastic error in probability. Numerical experiments illustrate the performance of the presented adaptive algorithm for a posteriori error control in multilevel Monte Carlo methods. These include a localised goal with problem-adapted meshes and a slit domain example. The latter demonstrates the refinement of regions with low solution regularity based on an inexpensive explicit error estimator in the multilevel algorithm.
  • Item
    An adaptive stochastic Galerkin tensor train discretization for randomly perturbed domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Eigel, Martin; Marschall, Manuel; Multerer, Michael
    A linear PDE problem for randomly perturbed domains is considered in an adaptive Galerkin framework. The perturbation of the domains boundary is described by a vector valued random field depending on a countable number of random variables in an affine way. The corresponding Karhunen-Loève expansion is approximated by the pivoted Cholesky decomposition based on a prescribed covariance function. The examined high-dimensional Galerkin system follows from the domain mapping approach, transferring the randomness from the domain to the diffusion coefficient and the forcing. In order to make this computationally feasible, the representation makes use of the modern tensor train format for the implicit compression of the problem. Moreover, an a posteriori error estimator is presented, which allows for the problem-dependent iterative refinement of all discretization parameters and the assessment of the achieved error reduction. The proposed approach is demonstrated in numerical benchmark problems.
  • Item
    Comparison of monomorphic and polymorphic approaches for uncertainty quantification with experimental investigations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Drieschner, Martin; Eigel, Martin; Gruhlke, Robert; Hömberg, Dietmar; Petryna, Yuri
    Unavoidable uncertainties due to natural variability, inaccuracies, imperfections or lack of knowledge are always present in real world problems. To take them into account within a numerical simulation, the probability, possibility or fuzzy set theory as well as a combination of these are potentially usable for the description and quantification of uncertainties. In this work, different monomorphic and polymorphic uncertainty models are applied on linear elastic structures with non-periodic perforations in order to analyze the individual usefulness and expressiveness. The first principal stress is used as an indicator for structural failure which is evaluated and classified. In addition to classical sampling methods, a surrogate model based on artificial neural networks is presented. With regard to accuracy, efficiency and resulting numerical predictions, all methods are compared and assessed with respect to the added value. Real experiments of perforated plates under uniaxial tension are validated with the help of the different uncertainty models.
  • Item
    Low-rank tensor reconstruction of concentrated densities with application to Bayesian inversion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Eigel, Martin; Gruhlke, Robert; Marschall, Manuel
    A novel method for the accurate functional approximation of possibly highly concentrated probability densities is developed. It is based on the combination of several modern techniques such as transport maps and nonintrusive reconstructions of low-rank tensor representations. The central idea is to carry out computations for statistical quantities of interest such as moments with a convenient reference measure which is approximated by an numerical transport, leading to a perturbed prior. Subsequently, a coordinate transformation leads to a beneficial setting for the further function approximation. An efficient layer based transport construction is realized by using the Variational Monte Carlo (VMC) method. The convergence analysis covers all terms introduced by the different (deterministic and statistical) approximations in the Hellinger distance and the Kullback-Leibler divergence. Important applications are presented and in particular the context of Bayesian inverse problems is illuminated which is a central motivation for the developed approach. Several numerical examples illustrate the efficacy with densities of different complexity.
  • Item
    Variational Monte Carlo - Bridging concepts of machine learning and high dimensional partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Eigel, Martin; Trunschke, Philipp; Schneider, Reinhold; Wolf, Sebastian
    A statistical learning approach for parametric PDEs related to Uncertainty Quantification is derived. The method is based on the minimization of an empirical risk on a selected model class and it is shown to be applicable to a broad range of problems. A general unified convergence analysis is derived, which takes into account the approximation and the statistical errors. By this, a combination of theoretical results from numerical analysis and statistics is obtained. Numerical experiments illustrate the performance of the method with the model class of hierarchical tensors.
  • Item
    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Eigel, Martin; Marschall, Manuel; Pfeffer, Max; Schneider, Reinhold
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm.
  • Item
    Local equilibration error estimators for guaranteed error control in adaptive stochastic higher-order Galerkin FEM
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Eigel, Martin; Merdon, Christian
    Equilibration error estimators have been shown to commonly lead to very accurate guaranteed error bounds in the a posteriori error control of finite element methods for second order elliptic equations. Here, we extend previous results by the design of equilibrated fluxes for higher-order finite element methods with nonconstant coefficients and illustrate the favourable performance of different variants of the error estimator within two deterministic benchmark settings. After the introduction of the respective parametric problem with stochastic coefficients and the stochastic Galerkin FEM discretisation, a novel a posteriori error estimator for the stochastic error in the energy norm is devised. The error estimation is based on the stochastic residual and its decomposition into approximation residuals and a truncation error of the stochastic discretisation. Importantly, by using the derived deterministic equilibration techniques for the approximation residuals, the computable error bound is guaranteed for the considered class of problems. An adaptive algorithm allows the simultaneous refinement of the deterministic mesh and the stochastic discretisation in anisotropic Legendre polynomial chaos. Several stochastic benchmark problems illustrate the efficiency of the adaptive process.
  • Item
    SDE based regression for random PDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Anker, Felix; Bayer, Christian; Eigel, Martin; Ladkau, Marcel; Neumann, Johannes; Schoenmakers, John G.M.
    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
  • Item
    Non-intrusive tensor reconstruction for high dimensional random PDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Eigel, Martin; Neumann, Johannes; Schneider, Reinhold; Wolf, Sebastian
    This paper examines a completely non-intrusive, sample-based method for the computation of functional low-rank solutions of high dimensional parametric random PDEs which have become an area of intensive research in Uncertainty Quantification (UQ). In order to obtain a generalized polynomial chaos representation of the approximate stochastic solution, a novel black-box rank-adapted tensor reconstruction procedure is proposed. The performance of the described approach is illustrated with several numerical examples and compared to Monte Carlo sampling.