Search Results

Now showing 1 - 10 of 8886
  • Item
    Methyl 5-chloro-2-hydr-oxy-3-(4-methoxyphenyl)-4,6-dimethylbenzoate
    (Chester : International Union of Crystallography, 2009) Adeel, M.; Ali, I.; Langer, P.; Villinger, A.
    In the title compound, C17H17ClO4, the dihedral angle between the mean planes of the two benzene rings is 65.92 (5)°. The methyl ester group lies within the ring plane [deviations of O atoms from the plane = -0.051 (2) and 0.151 (2) Å] due to an intra-molecular O - H⋯O hydrogen bond. In the crystal, molecules are held together by rather weak non-classical inter-molecular C - H⋯O hydrogen bonds, resulting in dimeric units about inversion centers, forming eight- and ten-membered ring systems as R22(8) and R2 2(10) motifs. © Adeel et al. 2009.
  • Item
    Trend detection in river flow indices in Poland
    (Heidelberg : Springer, 2018) Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.
    The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly ‘no trend’ results. However, the spatial gradient is apparent only for the data for the period 1981–2016 rather than for 1956–2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
  • Item
    [1-Dimethylsilyl-2-phenyl-3-(η5-tetramethylcyclopentadienyl) prop-1-en-1-ylκC1](n5-pentamethylcyclopentadienyl)- titanium(III)
    (Chester : International Union of Crystallography, 2009) Lamač, M.; Spannenberg, A.; Arndt, P.; Rosenthal, U.
    The title compound, [Ti(C10H15)(C20H 26Si)], was obtained from the reaction of [Ti{5: 1-C5Me4(CH2)}(5-C 5Me5)] with the alkynylsilane PhC2SiMe 2H. The complex crystallizes with two independent mol-ecules in the asymmetric unit, which differ in the conformation of the propenyl unit, resulting in their having opposite helicity. No inter-molecular inter-actions or inter-actions involving the Si- H bond are present. The observed geometrical parameters are unexceptional compared to known structures of the same type.
  • Item
    2-hydroxyethylammonium iodide
    (Chester : International Union of Crystallography, 2014) Kohrt, C.; Spannenberg, A.; Werner, T.
    In the crystal structure of the title salt, C2H 8NO+·I-, N-H⋯O, N-H⋯I and O-H⋯I hydrogen bonds lead to the formation of layers staggered along the c axis.
  • Item
    Redetermination of EuScO3
    (Chester : International Union of Crystallography, 2009) Kahlenberg, V.; Maier, D.; Veličkov, B.
    Single crystals of europium(III) scandate(III), with ideal formula EuScO3, were grown from the melt using the micro-pulling-down method. The title compound crystallizes in an ortho-rhom-bic distorted perovskite-type structure, where Eu occupies the eightfold coordinated A sites (site symmetry m) and Sc resides on the centres of corner-sharing [ScO6] octa-hedra (B sites with site symmetry ). The structure of EuScO3 has been reported previously based on powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The results of the current redetermination based on single-crystal diffraction data shows an improvement in the precision of the structral and geometric parameters and reveals a defect-type structure. Site-occupancy refinements indicate an Eu deficiency on the A site coupled with O defects on one of the two O-atom positions. The crystallochemical formula of the investigated sample may thus be written as A(0.032Eu0.968)BScO2.952.
  • Item
    Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate
    (Chester : International Union of Crystallography, 2015) Schirmer, Marie-Luis; Spannenberg, Anke; Werner, Thomas
    The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.
  • Item
    Iodidobis(≠5-penta-methyl-cyclo-penta-dien-yl)titanium(III)
    (Chester : International Union of Crystallography, 2010) Kessler, M.; Spannenberg, A.; Rosenthal, U.
    In the title complex mol-ecule, [Ti(C10H15) 2I], the paramagnetic Ti(III) atom is coordinated by two penta-methyl-cyclo-penta-dienyl (Cp*) ligands and one iodide ligand. The two Cp*ligands are in a staggered orientation. The coordination geometry at the titanium atom can be described as distorted trigonal-planar.
  • Item
    Tris(η5-cyclopentadienyl)hafnium(III)
    (Chester : International Union of Crystallography, 2011) Burlakov, V.V.; Arndt, P.; Spannenberg, A.; Rosenthal, U.
    In the crystal structure of the title compound, [Hf(C5H 5)3], three cyclopentadienyl ligands surround the Hf III atom in a trigonal-planar geometry. The molecule lies on a sixfold inversion axis.
  • Item
    {N,N-Bis[bis(2,2,2-trifluoroethoxy)phosphanyl]methylamine- κ2 P,P′}bis(η5-cyclopentadienyl) titanium(II)
    (Chester : International Union of Crystallography, 2013) Haehnel, M.; Hansen, S.; Spannenberg, A.; Beweries, T.
    The title compound, [Ti(C5H5)2(C 9H11F12NO4P2)], is a four-membered titanacycle obtained from the reaction of Cp2Ti(η 2-Me3SiC2SiMe3) and CH 3N[P(OCH2CF3)2]2 {N,N-bis[bis(trifluoroethoxy)phosphanyl]methylamine, tfepma}. The Ti II atom is coordinated by two cyclopentadienyl (Cp) ligands and the chelating tfepma ligand in a strongly distorted tetrahedral geometry. The molecule is located on a mirror plane.
  • Item
    Dicyclohexylbis(naphthalen-1-ylmethyl)phosphonium chloride chloroform disolvate
    (Chester : International Union of Crystallography, 2012) Gowrisankar, S.; Neumann, H.; Spannenberg, A.; Beller, M.
    In the title solvated phosphonium salt, C34H40P+·Cl -·2CHCl3, the two cyclohexyl and two 1-naphthylmethyl groups at the P atom are in a distorted tetrahedral arrangement [105.26 (6)-113.35 (6)°]. Both cyclohexyl rings adopt a chair conformation. The dihedral angle between the naphthyl ring systems is 74.08 (3)°.