Search Results

Now showing 1 - 7 of 7
  • Item
    Chiral Spin Liquid Ground State in YBaCo3FeO7
    (College Park, Md. : APS, 2022) Schweika, W.; Valldor, M.; Reim, J.D.; Rößler, U.K.
    A chiral spin liquid state is discovered in the highly frustrated, noncentrosymmetric swedenborgite compound YBaCo3FeO7, a layered kagome system of hexagonal symmetry, by advanced polarized neutron scattering from a single domain crystalline sample. The observed diffuse magnetic neutron scattering has an antisymmetric property that relates to its specific chirality, which consists of three cycloidal waves perpendicular to the c axis, forming an entity of cylindrical symmetry. Chirality and symmetry agree with relevant antisymmetric exchanges arising from broken spatial parity. Applying a Fourier analysis to the chiral interference pattern, with distinction between kagome sites and the connecting trigonal interlayer sites of threefold symmetry, the chiral spin correlation function is determined. Characteristic chiral waves originate from the trigonal sites and extend over several periods in the kagome planes. The chiral spin liquid is remarkably stable at low temperatures despite strong antiferromagnetic spin exchange. The observation raises a challenge, since the commonly accepted ground states in condensed matter either have crystalline long-range order or form a quantum liquid. We show that, within the classical theory of magnetic order, a disordered ground state may arise from chirality. The present scenario, with antisymmetric exchange acting as a frustrating gauge background that stabilizes local spin lumps, is similar to the avoided phase transition in coupled gauge and matter fields for subnuclear particles.
  • Item
    Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6
    (College Park, Md. : APS, 2020) Portnichenko, P.Y.; Akbari, A.; Nikitin, S.E.; Cameron, A.S.; Dukhnenko, A.V.; Filipov, V.B.; Shitsevalova, N.Yu.; Čermák, P.; Radelytskyi, I.; Schneidewind, A.; Ollivier, J.; Podlesnyak, A.; Huesges, Z.; Xu, J.; Ivanov, A.; Sidis, Y.; Petit, S.; Mignot, J.-M.; Thalmeier, P.; Inosov, D.S.
    In contrast to magnetic order formed by electrons' dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compound CeB6 and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as "hidden order."Previously, the hidden order in phase II was identified as primary antiferroquadrupolar and field-induced octupolar order. Here, we present a combined experimental and theoretical investigation of collective excitations in phase II of CeB6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in a rotating field is calculated within a localized approach using the pseudospin representation for the Γ8 states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at a constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of intermultipolar interactions that stabilize hidden-order phases. © 2020 authors. Published by the American Physical Society.
  • Item
    Quantum fluctuations of charge order induce phonon softening in a superconducting cuprate
    (College Park, Md. : APS, 2021) Huang, H.Y.; Singh, A.; Mou, C.Y.; Johnston, S.; Kemper, A.F.; van den Brink, J.; Chen, P.J.; Lee, T.K.; Okamoto, J.; Chu, Y.Y.; Li, J.H.; Komiya, S.; Komarek, A.C.; Fujimori, A.; Chen, C.T.; Huang, D.J.
    Quantum phase transitions play an important role in shaping the phase diagram of high-temperature cuprate superconductors. These cuprates possess intertwined orders which interact strongly with superconductivity. However, the evidence for the quantum critical point associated with the charge order in the superconducting phase remains elusive. Here we show the short-range charge orders and the spectral signature of the quantum fluctuations in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) near the optimal doping using high-resolution resonant inelastic X-ray scattering. On performing calculations through a diagrammatic framework, we discovered that the charge correlations significantly soften several branches of phonons. These results elucidate the role of charge order in the LSCO compound, providing evidence for quantum critical scaling and discommensurations associated with charge order.
  • Item
    Unraveling the Orbital Physics in a Canonical Orbital System KCuF3
    (College Park, Md. : APS, 2021) Li, Jiemin; Xu, Lei; Garcia-Fernandez, Mirian; Nag, Abhishek; Robarts, H.C.; Walters, A.C.; Liu, X.; Zhou, Jianshi; Wohlfeld, Krzysztof; van den Brink, Jeroen; Ding, Hong; Zhou, Ke-Jin
    We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF3 using the Cu L3-edge resonant inelastic x-ray scattering. We show that the nondispersive high-energy peaks result from the Cu2+  dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF3, which predominantly drives orbital ordering.
  • Item
    Coexistence of Superconductivity and Charge Density Waves in Tantalum Disulfide : Experiment and Theory
    (College Park, Md. : APS, 2020) Kvashnin, Y.; VanGennep, D.; Mito, M.; Medvedev, S.A.; Thiyagarajan, R.; Karis, O.; Vasiliev, A.N.; Eriksson, O.; Abdel-Hafiez, M.
    The coexistence of charge density wave (CDW) and superconductivity in tantalum disulfide (2H-TaS2) at low temperature is boosted by applying hydrostatic pressures to study both vibrational and magnetic transport properties. Around Pc, we observe a superconducting dome with a maximum superconducting transition temperature Tc=9.1 K. First-principles calculations of the electronic structure predict that, under ambient conditions, the undistorted structure is characterized by a phonon instability at finite momentum close to the experimental CDW wave vector. Upon compression, this instability is found to disappear, indicating the suppression of CDW order. The calculations reveal an electronic topological transition (ETT), which occurs before the suppression of the phonon instability, suggesting that the ETT alone is not directly causing the structural change in the system. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods. While a d wave and single-gap BCS prediction cannot describe the lower critical field Hc1 data, the temperature dependence of the Hc1 can be well described by a single-gap anisotropic s-wave order parameter. © 2020 authors. Published by the American Physical Society.
  • Item
    Measurement of Spin Dynamics in a Layered Nickelate Using X-Ray Photon Correlation Spectroscopy: Evidence for Intrinsic Destabilization of Incommensurate Stripes at Low Temperatures
    (College Park, Md. : APS, 2021) Ricci, Alessandro; Poccia, Nicola; Campi, Gaetano; Mishra, Shrawan; Müller, Leonard; Joseph, Boby; Shi, Bo; Zozulya, Alexey; Buchholz, Marcel; Trabant, Christoph; Lee, James C. T.; Viefhaus, Jens; Goedkoop, Jeroen B.; Nugroho, Agustinus Agung; Braden, Markus; Roy, Sujoy; Sprung, Michael; Schüßler-Langeheine, Christian
    We study the temporal stability of stripe-type spin order in a layered nickelate with x-ray photon correlation spectroscopy and observe fluctuations on timescales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up on both heating and cooling. This behavior appears to be directly connected with spatial correlations: stripes fluctuate slowly when stripe correlation lengths are large and become faster when spatial correlations decrease. A low-temperature decay of nickelate stripe correlations, reminiscent of what occurs in cuprates as a result of a competition between stripes and superconductivity, hence occurs via loss of both spatial and temporal correlations.
  • Item
    Hidden Charge Order in an Iron Oxide Square-Lattice Compound
    (College Park, Md. : APS, 2021) Kim, Jung-Hwa; Peets, Darren C.; Reehuis, Manfred; Adler, Peter; Maljuk, Andrey; Ritschel, Tobias; Allison, Morgan C.; Geck, Jochen; Mardegan, Jose R. L.; Bereciartua Perez, Pablo J.; Francoual, Sonia; Walters, Andrew C.; Keller, Thomas; Abdala, Paula M.; Pattison, Philip; Dosanjh, Pinder; Keimer, Bernhard
    Since the discovery of charge disproportionation in the FeO2 square-lattice compound Sr3Fe2O7 by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained “hidden” to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO2 planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on “hidden order” in other materials.